INVESTIGATION OF ADAPTING NAVAL ARCHITECTURE AND MARINE ENGINEERING DESIGN PROCESSES TO DIGTAL COMPUTER SOLUTIONS

Carl Richard Brandt
John Charles Snyder
and
Claude Richard Thompson

Library Postgraduate School
U. S. Naval Potir

Monterey, California

$$
1-18
$$

COM
NAV
MAR
computers
NAVAL ARCHITECTURE MARINE ENGINEERING-

$$
\rangle
$$

Thesis
3799

Investigation of Adapting Naval Architecture and Marine Engineering Design Processes to
 Digital Computer Solution

by

Carl R. Brandt
Lieutenant, U.S. Navy
John C. Snyder Lieutenant, U.S. Navy
Claude R. Thompson Lieutenant, U.S. Coast Guard

Submitted to the Department of Naval Architecture and Marine Engineering on May 21, 1955, in partial fulfillment of the requirements for the degree of Naval Engineer.

ABSTRACT

This thesis investigates the feasibility of adapting Naval Architecture and Marine Engineering design processes to digital computer solution

Two problems, the determination of critical whirling frequencies of propeller shafts and the determination $\neg f$ stresses in a transverse web frame are programmed for a digital computer. A detailed explanation of the programs and a discussion of the methods of approach and difficulties encountered in adapting the solutions of these problems to a digital computer is included. The most important results obtained from programing
these problems are experience with and knowledge of digital comprters. Applying this knowledge and experience to the general field of naval architecture the following conclusions and recommendations are presented:

Conclusions:

a. Digital computers are applicable to naval architecture problems.
b. The average naval architect has sufficient background to program a digital computer.
c. A programer should have a comolete engineerins understanding of the problem and some familiarity with numerical methods of mathematical processes.
d. In general the limitations imposed by the computer on a problem are no more restrictive than those imposed by manual methods.
e. The digital computer used should be able to handle numbers usually encountered in engineering problems.

Recommendations:

a. Digital computer should be used in naval architecture,
b. Digital computers are suited for theses and research problems.
c. Any future thesis should only consider the computer as an aid in the solution of a specific problem and not general applicability of the computer.
d. For engineering applications the programmer should have; (a) a good engineering understanding of his field; (b) knowledge of numerical methods of mathematical processes; (c) organizational abilities.

Thesis Supervisor: Robert J。Hansen
Title: Associate Professor of Structural Engineering

ACKNOWLEDGEMENTS

The authors are indebted to Professor R. J. Hansen of the Civil Engineering Department, Massachusetts Institute of Technology, for his advice and guidance; to Professor J. H. Evans, Professor A. D'Arcangelo and Professor F. M. Lewis of the Naval Architecture and Marine Engineerins Department, Massachusetts Institute of Technology, for their great interest and assistance in the development of this thesis; to Mr. Jack Roseman and Mr. Arnold Siegel of the Digital Computer Laboratory, Massachusetts Institute of Technology, for their patience and instruction in programming the computer; to Miss Dolores Diorio for her skill in preparing the thesis in its final form; and to the large number of people at the Massachusetts Institute of Technology who helped make this an enjoyable and educational experience.

Table of Contents

Page
Title Page. Abstract i
Table of Contents iv
I Introduction 1
II Procedure 8
A. General. 8
B. Propeller Shaft Whirling Frequencies 9
C. Transverse Web Frame 17
III Results。 31
IV Discussion of Results 34
V Conclusions. 41
VI Recomnendations. 42
VII Appendices
A. Supplementary Introduction 43

1. Glossary of Instructions 49
B. Details of Procedure 52
2. Program for Propeller Shaft Whirling Frequencies. 52
3. Program for Transverse Web Frame. 78
C. Bibliography. 154

Introduction

The field of naval architecture contains some of the most complex problems facing the engineering profession in this modern day and age. A ship is a structure containing a network of mechanical equipage that is unequaled by any other movable structure in the world. The complexity of such a structure almost defies analytic approach and as a result much of the design work is based on previously built vessels. A parent design is altered by repeating various numerical procedures until the desired result is obtained. The practice of naval architecture can best be described as laborious and repetitive with a necessity for a background of experience.

In an effort to eliminate the necessity of utilizing personnel to perform laborious calculations, following World War II a committee was appointed by the Bureau of Ships to investigate and report on the applicability of utilizing machine aided calculations for problems arising in the preliminary design stage. Due to the stage of development of electronic computers at that time an analog computer was developed for stability calculations in the preliminary design. Although this investigation did consider the application of digital computers to problems in the preliminary design stage, the application to the general field of naval architecture was not fully considered. (ll) ${ }^{1}$

The purpose of this thesis is to investigate the applicability of digital computers to the field of naval architecture. With primary emphasis on structural design problems, to acquaint the authors and other

1. Numbers in parentheses refer to the Bibliography at the end of the thesis.

naval architects with this new method of approach, to determine the type problems best suited for computer solution and publish some of the difficulties encountered, to determine the type of person required to utilize most effectively the machine aids and to incite interest in applying digital computers in the investigation of problems heretofore considered too laborious and time consuming to analyze by hand calculations. To do this the authors had to first acquaint themselves with an existing computer and secondly, to pick sample engineering problems of generic nature for specific programming.

The authors are graduate students in naval architecture whose studies have been primarily channeled in the direction of hull structures. The background in mathematics included calculus through differential equations and a basic course in vector and complex mathematics. Their background in mathematics is no better than can be expected from the practicing naval architect。

Two problems were picked as samples, one, calculation of the whirling frequencies of a propeller shafting arrangement and two, an analysis of an indeterminate structure of five degrees of indeterminancy. These problems were picked because they are examples of types that require reiterative procedures in their solutions. Further, both problems had solutions that had been previously determined by hand.

The digital computer investigated and utilized was the Whirlwind I computer at MIT. This computer started operations in November 1950 and has been used as a guide for the development of many commercially available machines today. For this reason the general conclusions drawn from an analysis of the applicability of Whirlwind I should apply to any machine considered for particular problems, although other machines may have different capabilities.

Basically, all digital computers utilize the same theory of operation. They all contain the following elements: storage element, control element, arithmetic element and input and output devices, as depicted in Figure I.

Calculations are performed in the arithmetic element utilizing the numbers and instructions contained in the storage element. Input and output devices are used to get information in and out of the computer. The control element makes the components function.

Schematic Diagram of Digital Computer
Figure I

The discussion of the individual elements that follows pertains to Whirlwind I only, although other computers have similar equipment that performs the same functions.

The storage element consists of 2048 registers or "cells." Instructions or numbers are stored in these registers by impressing electrical pulses on magnetic cores. Each register contains 16 such core and, therefore, the basic word-length is 16 digits. The pulses may be either positive or negative and the resulting direction of magnetization determines whether the digit represented is 0 or 1 . This means that all the machine claculations are carried out in the binary number system. In every register the first binary digit represents the sign of the number and the remaining 15 binary digits can represent approximately 5 decimal digits。

Instructions are stored in the registers in a slightly different manner. Here the first five binary digits represent the mathematical operation that is to be performed when the instruction is obeyed. The remaining eleven binary digits represent the location of the register containing the number on which the operation is to be performed.

The permanent storare of Whirlwind I may be increased to approximately 22,000 registers by the use of a magnetic drum. This device is somewhat slower in the transfer of information than is the permanent storage, but it is very convenient for the solution of lone problems. The arithmetic element consists of three registers. In one of these, called the accumulator, or "AC" register, the basic arithmetic operations of addition and subtraction are performed. Multiplication and division are accomplished by a series of these two basic operations.

The input devices are a photoelectric tape reader and a mechanical tape reader. These devices read into the storage element coded information from a punched paper tape. They convert holes in the tape into electrical signals to properly magnetize the registers of the storage element. A conversion routine is available to transform decimal information on the tape into binary information for storage in the computer. This feature is a great aid in programming and enhances the flexibility of the computer.

The output devices available are flexowriters, five magnetic tape units and an oscilloscope and camera. The desired output information can be typed out directly by flexowriters, or it can be stored on magnetic tape and typed out by the flexowriter at a later time. The latter procedure saves computer time since it is much faster to read information onto magnetic tape than to type it. Another method of petting the information out is to display it on the oscilloscope and photograph it. This saves typing time, but the film must be processed. However, it is convenient for reproducing the results. Standard output programs are available or special ones may be written to get the information out in the form desired. For instance, numbers may be in octal or decimal system; written in columns, lines, blocks, or tabulated; formed raised to a fixed power of ten or with a fixed decimal point. This flexibility of output is an important feature of digital computers.

Control Element

Each of the various components of the computer consists of combinations of electrical circuitry and transfer buses. Only through intelligent control of these devices can electrical signals be made to

perform arithmetic operations. The control element performs this function by causing the flow of magnetic signals to reach the proper element at the appropriate time. Basically then, the control element is a switching device that channels the information through transfer buses to itself and the other elements. To do this, the control element must interpret the program instructions, which are themselves magnetic signals, into other magnetic signals which control the operation of the computer.

The speed of operation of the computer depends upon the memory access time and the time required to integrate a number of switching combinations into a useful operation. Switching is performed by utilizing electrical impulses from a high frequency oscillator. A new set of switching combinations can be established for each time pulse received by the control element. The time required to perform an operation depends on the number of impulses necessary to perform the switching and the repetition rate of the impulses. In Whirlwind I the pulse repetition rate is 1 micro-second. At this rate the addition of two numbers requires 48 micro-seconds and multiplication requires approximately 65 micro-seconds. Using the conventional rating system which is the number of additions a computer can perform per second, the Whirlwind I is rated at 20,000 operations per second.

The instructions necessary to perform the desired mathematical calculations are called a program and are fully explained in Appendix A. For each computer there exists a standard instrvction code. By ingenious combinations of these standard instructions the programmer can cause a computer to perform the requisite numerical calculations.

One of the more important instructions is the "conditional response." This instruction allows the computer to make an either-or decision based on the sign of the number in the accumulator. As a result of this capability the computer can be made to cycle back through a series of instructions any desired number of times. The cycling ability is ideally suited to repetitive processes which are useful in design calculations.

Digital computers have been widely used in other fields of engineering and new adaptations are being developed every day. Some of the more important uses developed are:
(1) Aircraft weight, balance and thrust calculations.
(2) Steam turbine design
(3) Catapault launching analysis
(4) General structural application in the aircraft industry.

PROCEDURE

General

In order to accomplish the objectives discussed in the introduction it was necessary that some knowledge of computers be obtained. A twenty-five hour course in programming for Whirlwind I was completed by the authors to partially fulfill this requirement.

Once the capabilities of the computer were realized, it was necessary to decide what problem would best prove the basic contentions. Probably the biggest single factor in this decision was time. A very complicated problem would require a great deal of time to program while a simpler problem would not test the authors' ability.

A compromise was reached by deciding to program two problems. The first should be a relatively short and uncomplicated problem aimed at giving the authors experience with the computer and also making some contribution to naval architecture. The second problem should be of such size and complexity that its solution would more fully describe the abilities of the computer and the benefits of computer applications to naval architecture.

The first problem programmed was the determination of the whirling frequencies of propeller shafts. The method of solution was developed by Professor F. M. Lewis. This problem was selected because the method of solution is an iteration process ideally suited to computer application. Furthermore, the problem was short and each step had been delineated by hand calculations performed by Professor Lewis. This last reason was very important because it enabled the anthors to check their work and to ascertain the accuracy of the program.

The second problem programmed was the determination of stresses in a transverse web frame. A procedure similar to the one used in the Bureau of Ships was adapted to the computer. The numerous computations encountered in this problem made a computer solution very desirable. The calculations were made for a new destroyer type for which a partial check of the numerical results was available. Another important reason this problem was selected was to further the authors' knowledge in structural analysis of a ship. The course of instruction in naval architecture had not included the calculation of transverse strength.

PROPELLER SHAFT WHIRLING FREQUENCIES

Description of the Problem

Basically, the problem is to calculate the whirling or lateral frequency of a propeller shaft system in which the excitation is induced by the propeller. The method of calculation involves a numerical solution of a fourth degree differential equation of the form

$$
\frac{d^{4} y}{d x^{4}}-\frac{m \omega^{2}}{E I} y=0
$$

of which the general solution is of the form

$$
y=C_{1} \sin \lambda x+C_{2} \cos \lambda x+C_{3} \sinh \lambda x+C_{4} \cosh \lambda x
$$

where

$$
\lambda^{4}=\frac{m \omega^{2}}{E I} \quad \lambda I=\beta
$$

let $y^{\prime}=\theta$ and $y^{\prime \prime}=\Psi$. Applying boundary conditions to determine the constants of integration: at $\mathrm{x}=0$

$$
\begin{gathered}
C_{2}=\frac{-\Psi}{2 \lambda^{2}} \quad C_{4}=\frac{\Psi}{2 \lambda^{2}} \\
C_{3}=\frac{\frac{\Psi}{2 \lambda^{2}}(\cos \beta-\cosh \beta)-\frac{\theta}{\lambda} \sin \beta}{\sinh \beta-\sin \beta} \\
C_{1}=\frac{-\frac{\Psi}{2 \lambda^{2}}(\cos \beta-\cosh \beta)+\frac{\theta}{\lambda} \sinh \beta}{\sinh \beta-\sin \beta}
\end{gathered}
$$

at $x=L$

$$
\begin{aligned}
& \theta_{L}=\frac{\Psi_{0}}{\lambda}\left(\frac{\cos \beta \cosh \beta-1}{\sinh \beta-\sin \beta}\right)+\theta_{0} \frac{(\cos \beta \sinh \beta-\sin \beta \cosh \beta)}{\sinh \beta-\sin \beta} \\
& \Psi_{L}=\frac{\Psi(\cos \beta \sinh \beta-\cosh \beta \sin \beta)}{\sinh \beta-\sin \beta}-\frac{2 \theta \lambda \sin \beta \sinh \beta}{\sinh \beta-\sin \beta}
\end{aligned}
$$

then writing

$$
\begin{aligned}
& \theta_{L}=-\left(\theta_{0} S_{I}+\Psi_{0} L_{L} S_{2}\right) \\
& \Psi_{L}=-\left(S_{I} \Psi_{0}+\theta_{0} / L S_{3}\right)=\frac{m_{L}}{E I} .
\end{aligned}
$$

From which

$$
\begin{aligned}
& S_{1}=-\frac{\cos \beta \sinh \beta-\sin \beta \cosh \beta}{\sinh \beta-\sin \beta} \\
& S_{2}=-\frac{\cos \beta \cosh \beta-1}{\beta(\sinh \beta-\sin \beta)} \\
& S_{3}=\frac{2 \beta \sin \beta \sinh \beta}{\sinh \beta-\sin \beta}
\end{aligned}
$$

The above equations are applicable to one span of the shaft. In the solvtion of this problem these equations were used to determine the moment and angle of rotation at the end of one span and then carry these results over to the next span. The number of spans to be used is unspecified, however, it is the opinion of the authors that four spans give sufficient accuracy.

Since

$$
\omega=\frac{\beta^{2}}{L^{2}} \sqrt{\frac{E I}{m}}
$$

various values of β are assumed and the residual moment at the free end plotted versus the frequency. The value at which the end moment becomes zero is a resonant point or natural whirling frequency of the shafting system.

In applying these equations it is useful to determine certain parameters in terms of the physical properties of the shaft system. These are given below and the notation is explained in Figure I.

Schematic Diagram of Shaft

Figure I

It can be shown from the equations previously developed that

$$
m_{01}=-\frac{E_{0} I_{0}}{L_{0}}\left[\frac{\phi_{W}+\phi_{J}-\frac{\phi_{W} \phi_{J}}{3}}{I-\frac{\phi_{W}}{3}-\phi_{J}+\frac{\phi_{W} \phi_{J}}{12}}\right]
$$

where

$$
\begin{aligned}
& \phi_{W}=\frac{W_{p} I_{0}^{3} E_{I} I_{I}}{W_{I} I_{1}^{3} E_{0} I_{0}} \pi^{4}\left(\frac{\beta}{180}\right)^{4} \\
& \phi_{J}=\frac{J_{0} E_{I} I_{I}\left(\frac{I}{2}+\frac{I}{q}\right)}{W_{I} I_{1}^{3} E_{0} I_{0}} \pi^{4}\left(\frac{\beta}{180}\right)^{4}
\end{aligned}
$$

and

$$
\begin{aligned}
J= & \text { polar moment of inertia of propeller } \\
& \text { and entrained water. } \\
\mathrm{q}= & \text { the order of vibration being investigated. }
\end{aligned}
$$

The number subscripts refer to spans as shown in Figure I. From the above it can be seen that

$$
\begin{aligned}
& m_{12}=-\left(s_{11} m_{01}+c_{21} s_{31}\right) \\
& \theta_{12}=-\left(s_{11} \theta_{01}+m_{01} s_{21} / c_{21}\right)
\end{aligned}
$$

where

$$
c_{a I}=E_{I} I_{I} / I_{I}
$$

Here the second number subscripts refer to the span. It should be noted that θ_{01} is assumed as unity.

For determining s_{1}, s_{2}, s_{3} for different spans it is convenient to use the following:

$$
\beta_{2}=\beta_{I} \sqrt[4]{\frac{c_{d I}}{c_{d 2}}}
$$

where

$$
c_{d I}=\frac{E_{I} I I}{W_{I} I_{I}^{3}}
$$

The procedure described is repeated for each end moment and angle of rotation until the residual end moment, m_{34} is determined. Then a new value of β_{I} is assumed and the process repeated until a series of end moments versus frequencies results are generated. By plotting these values, or by interpolation, the critical whirling frequency can be found.

General Discussion of Program

The method developed for solution of the propeller shaft whirling frequencies is ideally suited to computer solution because it is essentially one of numerical iteration. Various values of β_{1} are assumed and the residual moment calculated for any number of spans. Since the labor involved in programming is the same regardless of the number of times a process is repeated, good accuracy can be obtained with no extra effort by the programmer and small increase in cost of operation of the computer.

The underlying guide in propramming this problem was to make it as general as possible. This was done so that anyone wishing to use this method in the future would merely have to change a few numbers to adapt this solution to his particular problem. The quantities to be changed were grouped separately at the beginning of the program and involve such factors as the physical characteristics of the propeller and shafting, the number of spans to be considered and the order of the vibration being investigated.

The first step in programming was to assign floating addresses or "flads" to registers wich were to hold the numerical quantities and key instructions. These flads contain the numbers or instructions upon which mathematical operations are to be performed. The purpose of floating addresses is to simplify programming by enabling the programmer to refer to a flad rather than an absolute address each time an instruction is written. The advantage of this systern is clearly demonstrated in the programs contained in the appendix. The flads used in prom gramming and the numbers they represent are given in Appendix B.

In addition to storing the data and constants of any problem, registers must be assigned to store intermediate results and for temporary storage.

The addresses of key instructions were assigned flads to aid in writing the program. For example, the flad, $h l$ is the address of the first instruction in the program. After all the information has been fed into the computer the following instruction is used, "START AT hl" and the program begins.

After the flad assignments had been made, the next step was to draw a flow diagram such as shown in Figure III. The purpose of this diagram was to aid in the organization of the program and to provide an orderly procedure for the programer to follow. It was a picture of the problem showing the sequence of operations to be performed. The programmer then wrote a short routine that would do, the calculations of each section show in the flow chart. The last step, then, was to combine these separate routines into one program that would solve the entire problem. Of course considerable care must be exercised in writing and combining these routines since the results of one section will influence the calculations in the following sections.

When the values of irequency and residual end moment had been generated in the arithmetic element, they were transferred to a magnetic tape via an output procedure. When the program had been completed these results were then transferred to a flexowriter and typed. The results were presented in tro columns of frequency vs. end moment. Thus, it was possible to determine the frequency at which the moment becomes zero by either linear interpolation or a plot of the data.

han
$2-2$

chery
-5
$\because N H=$

Figure III Flow Chart

STRESS CALCULATIONS FOR A NON-SYMMETRICALLY LOADED WEB PRAIE

Description of the Problem

A transverse web frame is a part of a system of franes and bulkheads that maintains the shape of the hull. A sketch of a web frame is given in Figure IVa. To do this it must provide support for longitudinal strength members and carry vertical shear loads from the decks and hull bottom into the sides which are the main vertical shear carrying members of the structure. The web frame is a continuous beam ring that encircles the hull girth in a transverse plane. All loads applied to the frame are assumed to lie within this plane, but may have any orientation within that plane. Under such loading a web frame rust resist axial loads, shear loads and bending loads. Since web frames are generally very long with respect to depth, bending moments are by far the most important aspect to be considered in the solution.

Due to the complex interaction between the webs, longitudinals, and bulkheads, the exact solution of the problem of web frames and the system of members that maintain the hull shape has defied rational engineering theory up to this time. Time limitations and the intent of this thesis prohibited an investigation of possible improvements in the method of the transverse strength calculations. It was decided to adapt to a computer solution a proven method. Al though transverse strensth calculations are not always performed for modern ships, the analysis normally utilized, if performed, is a long, laborious method developed by J. Bruhn ${ }^{(2)(6)}$.

Figure IVa Transverse Web Frame, Starboard Side

Figure IVb Web Frame Showing Redundant Forces

Bruhn's method is an adaptation of Castigliano's theorem of least work which states that "The redundant reaction components of a statically indeterminant structure are such as to make the internal work a minimum." (10) Determination of each of the redundant components requires that the differential of the total internal energy with respect to that redundant be equal to zero which is a minimum energy condition. Bruhn neglected the axial and shear components of energy and considered only the larger bending effects. Bruhn's basic energy equations for a web frame with two stanchions, as shown in Figure IVb, then become

$$
U=\frac{l}{2 \mathrm{E}} \int \frac{\mathrm{~m}^{2}}{\mathrm{I}} \mathrm{ds}
$$

where $m=m_{0}+p_{0} y+q_{0} x-m_{v}-m_{H}+R\left(x-x_{a}\right)+S\left(x-x_{b}\right)$

$$
\begin{aligned}
& \frac{\partial u}{\partial p_{0}}=\frac{I}{2 E} \int_{0}^{01} \frac{2 m}{I} \cdot \frac{\partial m}{\partial p_{0}} d s=0 \\
& \frac{\partial u}{\partial q_{0}}=\frac{I}{2 E} \int_{0}^{Q^{\prime}} \frac{2 m}{I} \cdot \frac{\partial m}{\partial q_{0}} \cdot d s=0 \\
& \frac{\partial u}{\partial m_{0}}=\frac{I}{2 E} \int_{0}^{0^{\prime}} \frac{2 m}{I} \cdot \frac{\partial m}{\partial m_{0}} d s=0 \\
& \frac{\partial u}{\partial R}=\frac{I}{2 E} \int_{B_{I}}^{B} \frac{2 m}{I} \cdot \frac{\partial m}{\partial R} \cdot d s=0 \\
& \frac{\partial u}{\partial S}=\frac{I}{2 E} \int_{B_{3}}^{B} \frac{2 m}{I} \cdot \frac{\partial m}{\partial S} d s=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial m}{\partial p_{0}}=y \\
& \frac{\partial m}{\partial q_{0}}=+x \\
& \frac{\partial m}{\partial m_{0}}=1 \\
& \frac{\partial m}{\partial R}=\left(x-x_{a}\right) \\
& \frac{\partial m}{\partial S}=\left(x-x_{b}\right)
\end{aligned}
$$

Bruhn's working equations become:

$$
\begin{aligned}
\frac{I}{E} \int_{0}^{01} y \frac{m}{I} d s & =0 \\
\frac{I}{E} \int_{0}^{0^{\prime}} x \frac{m}{I} d s & =0 \\
\frac{I}{E} \int_{0}^{0} \frac{m}{I} d s & =0 \\
\frac{I}{E} \int_{B_{I}}^{B}\left(x-x_{a}\right) \frac{m}{I} d s & =0 \\
\frac{I}{E} \int_{B_{3}}^{B_{4}}\left(x-x_{b}\right) \frac{m}{I} d s & =0
\end{aligned}
$$

Castigliano's first theorem states that, "the deflection in a certain direction at a certain point of a statically determinate structure is equal to the partial derivative of the total external work or the total internal energy with respect to a load applied at this point in the direction of the deflection." (10) Conversion of a statically indeterminate structure into a statically determinate structure by means of cutting the structure and applying redundant forces as loads allows the application of Castigliano's first theorem. The above equations then represent the deflection between the limits of the integration. Since the web frame is continuous, the deflections and rotations at the point of action of the redundants m_{0}, p_{0} and q_{0} are equal to zero. For the redundant column forces R and S, the columns are considered imcompressible and the vertical deflection between the column ends is equal to zero. This idea of deflections and rotations is used in the description and analysis of the problem in Appendix B.

To determine the redundants, five simultaneous equations must be formed and solved. In a problem that contains more or fewer redundant supports such as stanchions or decks, the number of redundant equations required to solve the web frame would of necessity be changed to form one equation for each redundant force.

After the equations had been developed and formed into a matrix, Crout's method of matrix reduction used to solve for the value of the redundants. These redundants were then combined with the applied loads and the moments recomputed. Utilizing the computed moments, the stresses due to bending were calculated. The direct forces were converted into axial
and shear stresses. These stresses and the bending stresses were then added algebraically to give the total stresses in the flange of the web frame and shell of the ship.

General Discussion of Program

The flow diagram contained in Figure V describes the sequence of calculations used in calculating the frame stresses. A detailed description of the instructions utilized in each sub-routine and the sequence control program are contained in Appendix B.

Due to the normal manner of construction of ships, the web frames are constructed as a symmetrical ring frame of variable cross-sections. The loads, however, are very complex and for a general solution must be considered as non-symmetrical. Note that for this problem only the simple static loads are considered.

The contours of the ship's hull must be represented within the computer and, in order to find the neutral axis and to form the components of the loads, the slope of the contour must be computed at each station. The most obvious solution for the novice programmer is to form the equation of the contour and differentiate that equation to determine the slope. As novices this solution was attempted, but was soon abandoned due to the complexity of the program necessary to form the equation and the inherent error involved in first using approximate methods to form the equation and more approximate methods required to utilize the equation. The method finally selected was to choose a series of stations around the girth of the web and assume the web is represented by a series of short straight

Figure Va Sequence of Operations for Web Frame Program

Figure Vb Comparison and Alteration Routine
beam segments. Stations were selected in such a manner that the angle change between segments was both small and nearly equal which, due to the variable curvature, makes each segment unequal in length. A station was necessary at the point of action of each redundant. Such a procedure follows a common philosophy of digital computers in that where complexity must be weighed against a greater number oî calculations and simplicity, the choice must be made in favor of simplicity. The number of stations required to properly approximate the DD hull was 49 which should be sufficient to approximate the frame of any vessel. $\operatorname{Sin} \theta$ and $\cos \theta$ were determined directly from the coordinates by using the Pythagorean Theorem and basic trigonometric relationships.

$$
\Delta s=\sqrt{d x^{2}+d y^{2}} \quad \sin \theta=\frac{\Delta y}{\Delta s} \quad \cos \theta=\frac{\Delta x}{\Delta s}
$$

This was done for two reasons, first, only the sin and cos are used in the solution and secondly, the $\tan \theta=\frac{\Delta y}{\Delta x}$ becomes infinity when $\Delta x=0$ which is the case on ships with wall sides or turnble home. The computer will not handle division by zero and the operations will be stopped when such a cas occurs. To approximate the functions of the tangent angle at each station, the functions of the chord angles were averaged. While $\sin \theta_{1}+\sin \theta_{2} / 2$ does not equal $\sin \left(\theta_{1}+\theta_{2}\right) / 2$, the error will be small as long as the change in θ is small which is another example of using a simple idea many times to obtain accuracy and generality.

Using the total water head which in the present problem was the height of the main deck and the average of the y coordinates of the
ends of the segments, the water pressure loads were determined and vertical and horizontal load components formed.

$$
\begin{aligned}
& p_{W}=H-\frac{\left(y_{1}+y_{2}\right)}{2} \\
& f_{W}=p_{W} d s \\
& V_{W}=f_{W} \sin \theta \\
& H_{W}=f_{W} \cos \theta .
\end{aligned}
$$

Using the inputs of the web dimensions, the distance of the
 inertia about the neutral axis determined ($I_{N_{.}} A_{\bullet}$)

$$
\begin{aligned}
& d_{N_{\bullet} \cdot A_{\bullet}}=\frac{m_{t}}{A_{t}} \\
& I_{N_{\bullet} A_{\bullet}}=I_{\text {shell }}-A_{t} d_{N_{\bullet} A_{\bullet}}
\end{aligned}
$$

Knowing $\mathrm{d}_{\mathrm{N} . A}$. and the $(\sin \phi)$ and $(\cos \phi)$ the offsets of the neutral axis from the shell could be determined.

$$
\begin{aligned}
& x_{N_{\bullet} A_{\bullet}}=x_{S}-d_{N_{\bullet} A_{\bullet}}(\sin \phi) \\
& y_{N_{\bullet} A_{\bullet}}=y_{S}-d_{N_{\cdot} A_{\bullet}}(\cos \phi)
\end{aligned}
$$

Using the same procedure developed for the shell, the segrnent leng ths and functions of the angle were formed.

One difficult engineering decision was the consideration of the sharp corner at the junction of the side shell and the deck edge. In normal practice the corner is bracketed and represents a point of complex discontinuity which nearly defies analytical analysis. After a numer of methods were considered, it was decided to make the corner a "hard spot" by incluaing the full bracket depth. The station spacing near the corner was reduced to minimize the effect of the cormer. In all cases the tangent at the corner was taken as -l which is equivalent to a slope angle of 135 degrees on the starboard side. This was done to form a smooth transition of the neutral axis around the cormer.

The moment due to applied loads and water loads was determined by $m_{n}=H d y+V d x$. The moments due to the redundant forces were: $p_{0} y+q_{0} x+R\left(x-x_{a}\right)+S\left(x-x_{b}\right)$.

The integrals of the moments were fomed by the trapenoidal rule. While the trapezoidal rule implies linear segments between mornent ordinates, this method was necessary to accomodate the random station spacing. The error resulting from the trapezoidal rvile will be small as long as the station spacing is close and the moment curve is smooth. Both conditions are present in this problem.

After solving for the redundants and recomviting the moments and axial loads to include all forces, the direct stresses and bending strossee were combined. The program as writton sives the alternative of performing a check calculation on the set of frame scantlines or of altering the frame scantlings to approach a more efficient design. The stresses were compared with allowable stresses and the section altered by chaneing the wreb flange

Σ°					
勺	$\left.\begin{array}{cc} 0 & \frac{y}{0} \\ x & \vec{x} \\ + & 1 \\ 0 & 0 \\ 0 & x \end{array} \right\rvert\,$			$\begin{array}{ll} x \\ x \\ + & 0 \\ \hline 0 & \end{array}$	
O-					
\bigcirc°					
\square°	$\frac{0}{\frac{0}{4}} \underbrace{\frac{c^{5}}{0}}_{\infty}$				
Σ^{0}	$=\underbrace{x}_{N}$				

Figure VI Arrangement of Matrix Formed by the Integration Sub-routine
width by predetermined incremental amounts. If $\left(\sigma_{\text {allow }}-\sigma_{f}\right)>0$, then the flange was reduced. If $\left(\sigma_{\text {allow }}-\sigma_{f}\right)<0$ then the Ilange was increased. The outputs of each cycle change may be any computed value the programer desires, but in the present problem the outputs were flange width, stress at the flange and at the shell, direct stress and shear stress at each point. Other methods of scantling change could have been utilized or the scantlings could have been altered by a complete change of scantlings around the girth. In the latter case each cycle wovld have required a decision by the programer, a procedure that has considerable merit where design experience in the mind of the programer can be better utilized. In the present problem it was decided to use the conditional response as another example of the digital computer's capabilities.

In the web frame problem the quantity of generated numbers necessary to produce a solution was so large that the auxiliary drum storage had to be utilized. Blocks of numbers were moved from the core memory onto the auxiliary drum to make room for calculations. Further, the size of the program was so large that optimum data output procedures could not be utilized without unwarranted complication of the program. The output data could have been typed or presented on films in columns of easily discernable numbers. In the present case the size of the program required output via an "fp" tape which gives five columns of numbers running consecvetively across the lines and the address of the registers containing the numbers listed in the first column. Judiciously placed zeros provide separation between numbers of different meaning.

To make the program as general as possible sub-routines were utilized to perform the calculations. A full description of the use of a sub-routine is contained in Appendix A. The sub-routines used will perform the calculation of stresses for a web frame of any dimension and shape desired. However, the number of redundants of the frame cannot exceed five and the water pressure head must equal the height of the deck edge. Due to limitations of storage space, the sequence instructions used will permit the use of only 49 stations around the girth. All of the above limitations can be exceeded by minor changes in the program should the necessity arise.

RESULTS

The numerical results obtained from the computer solvtion of problem one are contained in Table I. Numerical results were not obtained for problem two.

More important than the numerical results are the programs themselves. Problem one has been run and is known to be correct. The sub-routines of problem two, with the exception of the sub-routine for forming the stresses, were run and found to check. When all of the subroutines were run in conjunction with the sequence control program, several minor programing errors were found.

The first program will determine the critical whirling frequency of any propeller shaft where no more than four spans need be considered. It can be adapted to another shaft merely by changing the physical constants of the shaft involved.

The second progran will, if the above mentioned errors are removed, determine bending, axial and shear stresses in a transverse web frame and, if desired, will adjust the size of the web frame until the computed stresses approach the allowable stresses. The program is general within the limitations stated below; the required inputs being the dimensions of the web frame, the location of the stanchions and coordinates or points on the transverse section, the weight and shear loads at these points and the hydrostatic design head above the keel. The following are the limitations of the program:
(I) the frame scantlings are symmetrical about the ship centerline;
(2) the points defining the transverse section must be symmetrical about the ship centerline and only 25 may be taken on one side;
(3) one of these points must be on the centerline keel, one on the deck centerline and one at each end of all the stanchions;
(4) the hydrostatic pressure head must be equal to or greater than the height of the deck edge and hydrostatic pressure loads are not generated for the deck;
(5) ship must be in upright position;
(6) only one centerline or two off-center vertical stanchions may be used.

Computer time for calculation of problem one was 10 minutes, but the typing time of the results was 20 minutes. Computer time for the solution of problem two was 10 minutes.

Frequencies from hand calculations		Frequencies from computer solutions
+6 ORDER		
3.69 cps		3.870 cps
5.41		5.656
8.20		8.527
11.49		11.762
15. 00		15. 239
21.00		20.915
-6 ORDER		
		3.870
		5.656
		8.527
Not Available		11.762
		15.239
		20.915
+1 ORDER		
		3.870
		5.656
		8.527
Not Available		11.762
		15.239
		20.915
Critical Whirling Frequencies for Propeller Shait		

During the period that the thesis was being printed, the programming errors in the second program were remedied and the results listed in Table II were obtained. Table II contains the values of the redundants End the stresses at the keel and the deck at centerline. Due to the difference in station spacing between hand and machine calculations, the centerline points are the only coincident stations for the two methods of calculation.

	Hand Method	Computer Method
${ }^{\mathrm{m}} \mathrm{O}$	+72,144 -ft.	+46,395-ft。
p_{0}	+20,841	+19,805
${ }^{9} 0$	(assumed zero)	+282
R	+1925	+662
S	(assumed equal to R)	+662
$\sigma_{a}=p / A$	-3880 //sq.in.	-5193 \#/sq.in.
$\left.\sigma_{\text {flange }}\right\} \text { keei }$	+30,750 \#/sq.in.	+18,970 7 /sq.in.
$\left.\sigma_{\text {shell }}\right\}$	-15,440 \#/sq.in	-16,586 \#/sq.in.
σ_{a}	+470 \#/sq.in.	-1,000 \#/sq.in.
$\left.\sigma_{f}\right\} \text { deck }$	-10,480 \#/sq.in.	+25,000 \#/sq.in
σ_{s}	+3,350 \#/sq.in.	-12,868 \#/sq.in.

As shown in Table II there is little correlation between hand and machine calculated values. However, this lack of comparison is caused by two conditions. The most important condition is that the hand calculations have been found to be of doubtful validity. Several hand calculation errors were found and the scantlings used are not defined. Recent information indicates that the scantling values used in the Bureau of Ships hand calculations do not correspond with the scantling values presented in the contract plans used as a basis for machine calculations.

The other condition that causes a small error is the fact that summation of vertical forces does not equal zero. The difference between weight forces and buoyant forces must be balanced by vertical shear forces applied along the vertical sides of the hull. This shear force was taken from the hand calculations and was included in the input values for the program. The machine computed buoyant forces were different from hand computed values due largely to the difference in station spacing and the method of averaging the water pressure. Therefore, the input values of shear did not balance vertical forces computed by the machine. It is now obvious that the shear force values must be computed by a sub-routine in the computer program.

This lack of the means of proper comparison points out one other general mile of programming. The programmer should perform hand calculations for the problem being programmed using the method adapted to the computer. The authors decided that the use of existing hand

ER
computations would be a time saving device; however, as the results indicate, this was a poor decision and it is hoped that future proprammers will benefit by the author's experience.

With the exception of the shear error discussed above, the program does work and produces good results. With slight correction the web frame program is suited for research and engineering calculations. The time required for machine calculations was 25 seconds; however, program conversion required five minutes and typing time for results of calculations required twenty minutes.

Time limitations did not permit the running of the comparison and alteration program for the web frame.

DISCUSSION OF RESULTS

The subject of computer application to naval architectural problems is as general as the field of naval architecture itself. Each proposed application will require a separate analysis of feasibility. However, certain general conclusions and impressions can be gained from the two problem examples of this thesis. To each general conclusion there exists certain possible exceptions; however, these exceptions only tend to prove the contention that digital computers are not universal panaceas, but only local aids.

The programming errors found in problem two are normal errors that occur in every program and do not reflect upon the method of approach. The nature of these errors are incorrect addresses, typographical mistakes and human errors. The correction of these difficulties is only a matter of time and patience.

The results of the two programs indicate that digital computers are applicable to long and complicated naval architecture problems and that the numerical results are more than comparable with those of hand calculations. Of greater engineering importance than accuracy, was the great reduction in calculation time obtained by computer usage. For the first problem the computer required 10 minutes as opposed to an estimated hand calcuiation time of thirty (30) hours and in the second problem a more defined superiority is estimated in that the combuter solution will require approximately ten (10) minutes versus an estimated sixty (60) hours by hand. However, this comparison does not depict the true time
picture and the long tedious hours of program writing and ever present "debugging" or program correction must be considered. Although the programing time varies greatly with the programer's familiarity with the problem, computer and also, with the nature of the problem itself; in general the programming time and the time required for one hand calculation are roughly commensurate. The authors estimate that a practicing naval architect very familiar with the proposed problem and experienced in programming could program problem one in twenty (20) hours and problem two in forty (40) hours.

The "debugging" time for each problem would require another ten (10) hours. The fact that the authors, unfamiliar with both the problem and computer, required six times that amount of time indicates that experienced personnel are a very important application factor. In the present case problem understanding and organization were responsible for the greatest loss of time. As a general statement it can be said that for an engineer to properly program a particular problem, his knorledge of that problem must be more thorough than that required for hand calculations. Not only must he know the individual steps in the problem, but also must predict the effect of each step upon the following step and the general value of the numbers generated.

Also, the authors found that one programmer workins alone is just as effective as several working torether on the same problem. The reason for this is the necessity for a program to follow a single trend of thought and the exact accounting required.

To provide a more comolete time description of progranminc, the nature of the proposed problem should be analyzed. Problem solutions that involve repetition of the same equations will tend to have a. much shorter programing time. For instance the time required to program problem one for 40 spans of shafting would be only slightly longer than that required to program 4 spans. Also, the program required to design the web frame by cycling and altering the scantlings is little longer than the program for check calculations.

After the solution of one particular problen by a computer a general program will find further use in solving other similar problems. The programs written for this thesis are reasonably general and the limitations stated in the results are not of serious damage to the program. The limitation of problem one to four shaft spans in a reasonable engineering division in that propeller excited whirling vibration amplitudes beyond span four are so small that their effect on the end fixity of span four is insignificant. In problem two the limitations were imposed. to save storage space and reduce the complexity of the program. This coincides with the authors' opinions that for enpineering applications several simple programs are easier and faster to handle and program than one complex all purpose program. For instance, web frames are normally constructed symmetrically, 25 points should properly define most normal web shapes and to have a station at each major load or redundant is reasonable. The design hydrostatic head is normally above the maindeck and waterloads are normally considered a constant value along the deck. While the listed position of the ship is an important consideration,
modern naval architects consider the upright position for practical calculations and should the listed condition become necessary for research calculations, rotation formulas and non-symmetrical water loadings must be incorporated into the program. To change stanchions and add decks as redundant supports major alteration of integration procedures would be required.

A general program is useful in design and research to compare and generate great quantities of data and to test the results of slight alterations upon a major problem. For instance, program one covld analyze and compare the whirling frequencies of hundreds of ships in a relatively short time or the effects of propeller weight, fixity and blade number may be determined for numerous combinations of values. Problem two would find use in generating design schantlings for various load and size variations such as those found in classification society publications. As a sub-routine in conjunction with a more complex program the stiffness of web frames relative to transverse bulkheads could be determined by application of the theory of beams on elastic foundations. By reiteration of calculations under varying loads the variant or impactive loadings may be analyzed. Since the longest time consumed in a program is in the progran writing, problem repetition increases the efficiency of the computer application.

To be feasible for engineering calculations the computer must save time, money and increase the effectiveness of the engineers it aids. Therefore, the computer must accept numbers of ensineering magnitude and quantity in a convenient form. The coded instructions must be straightforward

and have names descriptive of their use. Also, the generated results must be presented in such a manner that wide spread publication is possible. Whirlwind I and some commercially available machines will accept decimal digits of sufficient length and quantity to perform most practical engineering and research problems. Of extreme importance is the necessiter of maintaining a large library of sub-routines capable of performing such calculations as $\sin ^{-1} \theta, \sqrt{\mathrm{X}}$, etc. Frequently it is desirable to purchese the services of an experienced programer to act as a consultant when first using a computer.

In computer application there exists two basic schools of thought. One group thinks that problems should be programmed by experts Who perform no other function than programming. In this case the engineer presents the problem to the programer and at some later time is given a solution. The other group states that a computer is best utilized by having engineers familiar with the problemeffect the programming. While there exists a middle road somewhere between the two extremes, the auth are of the opinion that engineers should program the computer. This performs two useful functions for the profession as a whole. One, the programmer can make the necessary engineering decisions to adapt the problem more successíully and secondly, the engineer becomes more aware of possible computer applications in his field.

The qualities required of a programmer are no more exacting than those required of a good naval architect. He must have almosit infinite patience, imarination, ingenuity, sood ability to organize problems and a good background in both theoretical and numerical methods
\bullet
of mathematics. The work is tedious and all instructions must ce perfect since the machine will generate wrong answers as fast as correct ones. Digital computers are often referred to as "brains," but nothincr could be more incorrect in that thought is impossible. Actually a computer more nearly resembles a desk cslculator or an abacus which operates at a hich rate of speed. Imagination and ingenuity are so necessary to produce a workable, general program that many commercial computing companies obtain their programmers from chess clubs, cross-word puzzle enthusiasts and other hobbies where deep concentration and original thought are required.

The future of digital computers in naval architecture appears very promising from both the research and practical viewpoints. In research they can be used for the rapid assimilation and processing of large quantities of technical data and for the solution of problems that require an inordinate amount of time to calculate by hand. Typical examples of the data processing type of problem would be a comparison of stability among several different vessels and other similar problems involving statistical analysis to establish design criteria. Since the same prom gram may be used to solve a number of similar problems, design data in the form of charts and tables can be generated for the grillare beam analysis of decks and other complex problems. Such a procedure permits the determination and testing of important parameters for later application to specific designs.

For specific design applications comouters may be used to effect large savings in time and labor. This is possible because the computer can approach more closely an optimum design with little increase in

computing time and expenditure of effort. In this categgory of apolication are midship section design, transverse framing design and flight deck bents. In addition, refinements intheory and in the extent of calculations can also be utilized to a greater degree than practical by hand. Examples of these refinements are the use of grillage beam analysis for decks and bulkheads, the performance of stress calculations for a ship in drydock, design of propellers by circulation theory, and the investigation of submarine dynamical stability. In addition to desion calculations a digital computer can be applied very readily to scheduling and accounting problems. In shipbuilding this system can be used in determining the weight and center of gravity of a ship as it is being built. Another possibility is merchant ship carro arrangement.

Theses present an opportunity for wide and varied use of digital computers. In this application the comouter should be used as an aid and not as the general subject. A student attempting a problem in which the magnitude of the calculations is the dominant factor should consider computer aid. A desireable arrangement is to have a team with one member learning the problem and another member learning the computer. In this manner both can derive maximum benefit from the thesis and a larger contribution to the profession can be made. Since computers are becoming more widely used, familiarity with their capabilities may be of considerable future value to the student.

CONCLUSIONS

1. Digital computers are applicable to naval architecture problems.
2. The average naval architect has sufficient background to prorram a digital computer.
3. Some general requirements of a programmer are:
a. They should have a complete engineering understanding of the problem to be programmed.
b. Familiarity with numerical methods of mathematical processes is necessary.
c. They should be amenable to tedious work.
4. The problem to be programmed must be suitable to comcuters since it may take longer to program than to determine one solution by hand.
5. One programer can work faster than two or more.
6. In general the limitations imposed on a problem are not serious and are no more restrictive than those in hand calculations.
7. Complete generality of a program is not always feasible.
8. For engineering applications the following features of computers are necessary:
a. Computer word-length should be able to handle enfineering numbers.
b. Library of sub-routines should be available.
c. Computer should be easy to program.

9. Digital computers should be used to solve naval architectural problems.
10. Digital computers should be used in theses and research problems.
11. Any future thesis should consider the computer as an aid in the solution of a specific problem and not applicability of computers to a general field.
12. For engineering applications the programmer should have;
a. good engineering understanding of his field;
b. knowledge of numerical methods;
c. organizational qualities and a great deal of ingenuity;
d. a working knowledge of the computer utilized.

Appendix A

Supplementary Introduction

Supplementary Introduction

A computer program is a series of logical instructions
telling the computer what mathematical operations are to be performed on the data. Thus there are two groups of inputs, the data and the instructions. The data fed into the computer is stored in the core memory. Each number or piece of data is stored in a register or "cell" the location of which is designated by a number called the address of that register. After all the data is stored the instructions are stored in the unused portion of the core memory. The instructions are stored in sequence and will be performed in the order in which they are stored. No unused registers are permitted to interrupt the storage as these will stop the computer. The programmer may wish to know the address of key instructions such as the one that starts the computation process. He may assign an address to these instructions or allow the computer to do so, as explained later.

The instructions given to the computer consist of two parts, the operation and address sections. The operation section is first and uses letters to tell the computer what mathematical operation is to be performed. The address section gives the address of the register containing the data on which the operation is to be performed. The instructions recognized by Whirlwind I are listed in the glossary.

When writing a program for a digital computer, there are several
useful devices that simplify the procedure. The programming devices described below apply to Whirlwind I and may or may not apply to other computers.

Probably the most useful device is a floating address. A
floating address or flad is used to eliminate the necessity of referring

to the absolute register address in the core memory when writing the program. At the beginning of a program the inputs or key instructions on which mathematical operations are to be performed are given floating addresses. These addresses consist of a letter and a number, for example al,a2 etc. Any letter except 0 and L may be used and the sum of all the numbers behind the letters may not exceed 255 . In writing the program, then, the flad is used in the address section of the instruction to represent the absolute address. The computer will assign absolute addresses or register numbers, to these flads unless this is done by the programmer. For example, if al is the first flad in the program, the computer will assign it to register 32. If, however, the programmer wants al in the register 130 , he writes $130 /$ al and the computer will place al in register 130. A table is usually produced by the computer showing absolute addresses assigned. It should be remembered that a flad can have only one value in any one program.

Another useful device is preset parameters. These are numbers other than data that are used in the program. Preset parameters are frequently used to designate the number of times a computation is to be repeated. They differ from flads in that they may have any absolute value desired whereas flads must have the absolute address of a register. Preset parameters must be assigned a value before they are used and they will retain this value until it is specifically changed. Preset parameters are designated by two letters and a number. The first letter must be p, u or z and the second letter and the number may be anything, except the letters 0 and I cannot be used.

In writing a program for a digital computer subroutines are very helpful. Basically there are two distinct types of subroutines which, for lack of a better name, shall be called internal and external. Internal subroutines are those performed automatically by the computer upon receipt of a single instruction. An example of an internal subroutine is the group of output instructions listed in the glossary. Each of these instructions will cause the computer to go through a certain predetermined procedure without any further information from the programmer. External subroutines are further divided into two categories; one category is designated library subroutines and are perfectly general for any program. The other external subroutines are groups of instructions that perform a repetitive section of a particular program. Library subroutines are groups of instructions usually written by an expert programmer for the purpose of performing a particular mathematical operation. They may be an integral part of the main program or they may merely serve as an auxiliary program. Examples of these external library subroutines are groups of instructions used to determine the square root of a number, trigonometric and hyperbolic functions of angles and the solutions to simultaneous equations. Most computer installations have libraries of subroutines available for programers. These are written quite arbitrarily by using relative addresses and can be used with any main program.

There are some rules that must be followed when using subroutines. The main program must be interrupted to call the subroutine into use. After the subroutine has performed its function, it must direct the control element back to the proper instruction in the main program. An example
of a subroutine follows:

Major program
ica a2
f6, isp g3 -- This instruction directs control to follow the instruction in the register designated by g3.

SUB-ROUTINE
g3, ita g3 plus 20 --- This instruction places the address contained in the control element in g3 plus 20 and adds one to that address. In this example the address contained in the control element is f^{6}.
iad t6
more instructions
" 1
11 it

11 is
g3 plus 20, isp $f 6$ plus 1 -- The address of the isp instruction was supplied by the ita instruction at the beginning of the subroutine。
f6 plus 1, iad a3
The authors do not wish to imply that a program should consist of a series of subroutines, but they are very useful in programs that perform similar operations many times throughout the problem.

The numbers usually encountered in engineering are too large to be stored in one register which, it will be recalled, is 16-binary or about 4 decimal digits long. To accommodate these larger numbers a technique called floating point arithmatic is used. Two consecutive registers, giving 32 binary digits available for each number, are used to replace the single register. Some of these 32 digits are used to record the actual number and some to locate the decimal point. In this manner the range of significant digits can be increased by restricting the number of digits used to locate the decimal point. In the binary system the decimal point is written as some power of 2 and usually 6 binary digits are used to express this power. Since the first digit of each register is used for the sign of the quantity in that register, in this case the sign of the second register is the sign of the exponent of 2. Twenty-four digits are left to express the significant number. This particular distribution of binary digits is referred to as the (24.6) system and can handle numbers equivalent to eight decimal digits with exponents up to 10^{18}. Other systems are available and the size of the numbers in the problem determines which one should be used.

In order to manipulate these two register numbers, an interpretive mode has been internally programmed to function as a part of Whirlwind I. All instructions that refer to double length registers are preceded by an i. If calculations or operations are to be performed on single length registers, the same instructions may be used without the i preceding. Hence there are two modes of calculation; interpretive for double register length numbers and whirlwind for single length register
numbers. It is possible to pass from the whirlwind mode to the inter pretive mode by use of the instruction IN and to reverse the direction by use of the instruction OUT.

TERM
ica x
ics x
iad x
isu X
imr x
idv x
its x
iex x
isp x
icp x

DEFINITION
clear MRA and add contents of register x .
clear MRA and subtract contents of register x .
add contents of register x to what is in MRA.
subtract contents of register x from what is in PRA.
multiply what is in MRA by the contents of register x and round off product to fifteen digits.
divide contents of MRA by the contents of register x .
transfer the contents of the MRA to register x losing what was previously in register x. The MRA remains unchanged.
exchange the contents of the $M R A$ with the contents of register x.
take the next instruction from register x. Does not affect the contents of the MRA由 An unconditional instruction used to break the sequence of operations.
if the contents of the $M R A$ are negative, take the next instruction from register x and continue from there. If the contents of the MRA are positive, take the next instruction in sequence. A conditional instruction used to break the sequence of operations.

Glossary of Instructions (Continued)

TERM

DEFTNITION

select counter number x. Without this instruction counter zero will be used whenever +C appears.
cycle reset. Sets index register of counter to zero and criterion register to x .
cycle transfer. Increases contents of index register by one. If contents of index register greater or equal to contents of criterion register, set index register to zero and do next instruction in sequence. If contents of index register less than contents of criterion register, take next instruction from register x .
increase the contents of index register by number x .
decrease the contents of index register by number x .
transfer the right eleven digits of the index register into the right eleven digits of register x.
add contents of index register to the contents of register x and store the result in the index register and register x .
ita X
replace the address section of the instruction in register x with the address that is one more than the address of the register containing the last isp or icp if the contents of the MRA are negative.

Glossary of Instructions (Continued)

TERM
i'PA
iMOA
iSOA
iFOR

DEFINTTION

record the contents of MRA on
direct printer (typewriter).
record the contents of $M R A$ on magnetic tape for delayed printing.
record the contents of MRA on oscilloscope for photographing.
this instruction provides an automatic device for obtaining a suitable layout of output data in columns, lines or blocks.

Note: The above output instructions are usually followed by a series of letters and numbers that indicate the desired form and arrangement of the output.

Appendix B
Details of Procedure

Details of Program for Determining the Whirling
 Frequencies of Propeller Shafts

The first step in programming this problem is to put the numerical values of various quantities into the computer. This is done by the use of floating addresses, or "flads." The proper use and function of flads is explained in Appendix A。

The following table lists the flads, the quantity and the values used. Figure II defines the symbols and nomenclature.
al, $\quad L_{0}=77^{\prime \prime}$ - length of tail section.
a2, $\quad I_{1}=513.6^{11}$ - length of inboard sections.
$I_{2}=576.0^{17}$
$L_{3}=544.6^{\prime \prime}$
bl, $\quad E_{0} I_{0}=17.4 \times 10^{I 0} I b-i n^{2}-E$ times moment of inertia of tail section.
b2, $\quad E_{I} I_{I}=I 3.7 \times 10^{I 0} 1 \mathrm{~b}-i n^{2}-\begin{aligned} & \text { E times moment of inertia of } \\ & \text { inboard sections. }\end{aligned}$

$$
\mathrm{E}_{2} I_{2}=12.4 \times 10^{10} 1 \mathrm{~b}-\mathrm{in}^{2}
$$

$$
\mathrm{E}_{3} \mathrm{I}_{3}=12.4 \times 10^{10} 1 \mathrm{~b}-\mathrm{in}^{2}
$$

cl, $\quad W_{p}=47,815 \mathrm{Ib}$ - weight of propeller
c2, $\quad V_{I}=.284 \mathrm{Ib} / \mathrm{in}^{3}-$ specific weight of material used in inboard shaft sections.
$\gamma_{2}=.284 \mathrm{Ib} / \mathrm{in}^{3}$
$\gamma_{3}=.284$ Ibf in 3
dl, $\quad A_{1}=193.5$ in 2 - average area of shaft cross section $\begin{aligned} & \text { for each span. }\end{aligned}$
$A_{2}=174.5 \mathrm{in}^{2}$
$A_{3}=174.5 \mathrm{in}^{2}$

The above listed flads are the only ones that must be changed in order to adapt this program to another problem. In order to accomplish this change it is merely necessary to add a tape with the correct values at the end of the program.

The following table lists flads that contain constants which will remain unchanged for every problem:

$$
\begin{array}{ll}
\text { el, } & \pi=3.1416 \\
\text { e2, } & 180 \\
\text { e5, } & g=386 \text { in-sec }^{2} \\
\text { e7, } & \beta_{I}=\text { current value of } \beta \cdot\left(\beta_{I}+\text { increment }\right) \\
\text { e8, } & \left(\frac{\pi}{180}\right)^{4} \\
\text { e9, } & \frac{\pi}{(180)^{2}} \\
\text { e10, } & 2 \\
\text { el1, } & 1 \\
\text { e12, } & 3 \\
\text { el3, } & 4
\end{array}
$$

A block of registers consisting of f and g flads has been set aside as intermediate storage. This is necessary to enable the computer to calculate quantities, store them temporarily and use them later in the program. Another group of registers consisting of t and u flads are set aside for temporary storage. These quantities are used once and then discarded.

The last group of flads used is the h and m group. These are used to control the program by assigning key instructions to them.

The outputs from this program will consist of a series of frequencies and corresponding end moments. These values will be arranged in two columns with the frequency corresponding to the moment that appears on the same line. It is very important to include the sign of the moment, for we are more interested in the point where the moment passes through zero than the actual values obtained.

In performing certain routine arithrnetical operations, such as finding the square root, use was made of the sub-routine library in the computer laboratory. These sub-routines are very reliable and save considerable time when programing.

The actual orders used for programing this problem follow. The short paragraph at the beginning of each section explains briefly the function of the orders in that section.

These three orders place the sub-routines for square root, sine-cosine and sinh-cosh at the beginning of the program. This is very desirable as it eliminates any confusion with the main program.

Order

SI, LSR, FU8
S2, ISR, FU4a
S3, LSR, FU5

Put in flad assignments al through glo as previously noted.

These orders are assigning values of 3, 2, 3 in the flads MI, M2, M3, respectively, the function of these flads is to set the cycle counter criterion registers to a predetermined value. The operation is done in WWI since the numbers are single register numbers. The last order is used to enter the CS mode.

Order	Input to MRA	In MRA	$\begin{aligned} & \text { Transfer } \\ & \text { from MRA } \end{aligned}$
hl, ca, d2	3	3	
td, mI		3	3
td, m3		3	3
su, ell	-1	2	
td, m2		2	2
IN			

This group of orders will calculate the weights of each shaft span and store the results in fl. The first order says that the operam tion is to be repeated three times. The $+C$ at the end of the next four orders is to permit the address section of the instruction to be increased by two registers on each cycle thus allowing three different
weights to be calculated by the same set of orders. The last instruction is necessary to return control to the first instruction at the end of each calculation, to increase the address of each instruction by two registers after each operation, and to pass control to the next order when the operation has been performed the number of times specified by the first order.

Order	Input to MRA	In MRA	Transfer from MRA
ml , icr			
h2, ica, c2+c	γ_{I}	γ_{I}	
imr, a2+c	$\times \mathrm{L}_{1}$	$L_{1} \times \gamma_{1}$	
imr, dl +c	$\times \quad A_{1}$	$L_{1} \times \gamma_{1} \times A_{1}$	
its, fl+c		W_{1}	W_{1}

This group of orders will calculate C_{a} and store the results in f2. The cycle will be performed three times since the order ml, icr is still effective.

Order	Input to MRA	In MRA	$\begin{aligned} & \text { Transfer } \\ & \text { from MRA } \end{aligned}$
h3, ica, b2+c	$E_{I} I_{1}$	$\mathrm{E}_{1} \mathrm{I}_{1}$	
idv, $\mathrm{a} 2+\mathrm{c}$	$\div \mathrm{L}_{1}$	$\frac{\mathrm{E}_{1} \mathrm{I}_{1}}{\mathrm{~L}_{1}}$	
its, f2+c		$\frac{\mathrm{E}_{1} I_{1}}{\mathrm{I}_{1}}$	C
ict, h3			

This group of orders will calculate C_{d} for each span and store the results in f3. The cycle will be repeated three times since the order ml , icr is still effective.

Order	Input to MRA	In MRA	$\begin{aligned} & \text { Transfer } \\ & \text { from MRA } \end{aligned}$
h4, ica, f2+c	$\frac{E_{1} I_{1}}{L_{1}}$	$\frac{E_{1} I_{I}}{L_{I}}$	
idv, a2+c	$\div \mathrm{L}_{1}$	$\frac{E_{1} I_{1}}{L_{1}^{2}}$	
idv, ${ }^{2}+\mathrm{c}$	$\div \mathrm{L}_{1}$	$\frac{\mathrm{E}_{1} \mathrm{I}_{1}}{\mathrm{I}_{1}^{3}}$	
idv, floc	$\div W_{1}$	$\frac{\mathrm{E}_{1} \mathrm{I}_{1}}{\mathrm{~W}_{1}{ }^{3}}$	
its, $\mathrm{f} 3+\mathrm{c}$		$\frac{E_{I} I_{I}}{W_{I} I_{I}^{3}}$	${ }^{\text {c }}$ d

This group of orders will calculate the constant $\pi /(180)^{2}$ and store the result in e9. This operation will only be performed once as no cycle is indicated.

Order	Input to MRA	In MRA	
ica, el π π	$\frac{\text { Transfer }}{\text { from MRA }}$		
idv, e2	$\div 180$	$\pi / 180$	
idv, e2	$\div 180$	$\pi /(180)^{2}$	
its, e9		$\pi /(180)^{2}$	$\pi /(180)^{2}$

This group of orders will calculate the constant $(\pi / 180)^{4}$ and store the result in e8. The device used here is that when a number is transferred from the MRA to a register the MRA retains the number. The fourth power is formed by multiplying the number in the MRA by the number that was transferred which is the same as squaring the number in the $M R A$, in this case $(\pi / 180)^{2}$.

| Order | Input to MRA | In MRA | Transfer
 from MRA |
| :---: | :---: | :---: | :---: | :---: |
| imr, el | $\times \pi$ | $(\pi / 180)^{2}$ | |
| its, e8 | | $(\pi / 180)^{2}$ | $(\pi / 180)^{2}$ |
| imr, e8 | $\times(\pi / 180)^{2}$ | $(\pi / 180)^{4}$ | |
| its, e8 | | $(\pi / 180)^{4}$ | $(\pi / 180)^{4}$ |

This group of orders will calculate C_{W} and store the result in f 4 .

Order	Input to MRA	In MRA	$\begin{aligned} & \text { Transfer } \\ & \text { from MRA } \end{aligned}$
ica, f3	$\frac{E_{1} I_{1}}{W_{1} I_{1}^{3}}$	$\frac{\mathrm{E}_{1} I_{I}}{W_{I} I^{3}}$	
imr, cl	$\times \mathrm{W}_{\mathrm{p}}$	$\frac{W_{p} E_{1} I_{1}}{W_{7} L_{7}^{3}}$	
imr, al	$\times \mathrm{L}_{0}$	$\frac{W_{p} L_{0} E_{1} I_{1}}{W_{1} I_{1}^{3}}$	
imr, al	$\times L_{0}$	$\frac{W_{p} L_{0}^{2} E_{1} I_{1}}{W_{1} I_{1}^{3}}$	
imr, al	$\times \mathrm{L}_{0}$	$\frac{W_{p} L_{0}^{3} E_{1} I_{1}}{W_{1} L_{1}^{3}}$	
idv, bl	$\div E_{0} I_{0}$	$\frac{W_{p} L_{0}^{3} E_{1} I_{I}}{W_{1} I_{1}^{3} E_{0} I_{0}}$	
imr, e8	$\times\left(\frac{\pi}{180}\right)^{4}$	$\frac{W_{p} L_{0}^{3} E_{I} I_{I}}{W_{I} I_{1} E_{0} I_{0}}\left(\frac{\pi}{180}\right)^{4}$	
its, f_{4}		$\frac{W_{p_{0}}{ }^{3} E_{I} I_{I}}{W_{I} I_{I}^{3} E_{0} I_{0}}\left(\frac{\pi}{I 80}\right)^{4}$	$\mathrm{C}_{\text {W }}$

This group of orders will calculate C_{f} and store the result in f6. In this operation the square root sub-routine is used. The third order is used to enter this sub-routine, which is in the Whirlwind mode, requiring the IN order to return to the CS mode once the square root has been calculated.

This group of orders will calculate C_{β} and store the result
in $£ 7$. The operation is performed twice, since $m 2$ is 2, because this constant is used to determine β_{2} and $\beta_{3^{\circ}}$. If more spans were used this operation would be performed a number of times equal to two less than the number of spans. The square root sub-routine is used twice in succession here to form the fourth root of a number.
Order Input to MRA In MRA $\quad \frac{\text { Transfer }}{\text { from MRA }}$
m2, icr
h5, ica, f3
$i d v, f 3+2+c$ $\div \frac{E_{2} I_{2}}{W_{2} L_{2}^{3}}$ $\frac{\mathrm{E}_{1} \mathrm{I}_{1}}{\mathrm{~W}_{1} \mathrm{I}_{1}^{3}}$
-

$$
\frac{E_{1} I_{1}}{W_{1} L_{1}^{3}}
$$

$$
\frac{E_{1} I_{1} W_{2} L_{2}^{3}}{W_{1} L_{1}^{3} E_{2} I_{2}}
$$

sp, sl
sp, sl

IN
$\sqrt[4]{\frac{E_{1} I_{1} W_{2} L_{2}^{3}}{W_{I} I_{I}^{3} E_{2} I_{2}}}$
its, $f 7+c$
$\sqrt[4]{\frac{E_{1} I_{1} W_{2} I_{2}^{3}}{W_{I} I_{I}^{3} E_{2} I_{2}}}$
C_{B}
ict, h5

This group of orders will calculate C_{j} and store the result in 15 . This operation is to be performed three times as indicated by the first order. The flad ml was not used here because the number of times this operation is performed depends on the number of vibrational orders being investigated and is independent of the number of spans. Usually three orders of vibration will be investigated, (synchronous, forward and backward precession). The flad h6 is the beginning of
the first loop of the program. This means that when the program has been run through once it will automatically come back to h6 and do the entire program again using the second value of e3. This loop will be performed three times as indicated by the first instruction.
icr, 3
h6, ica, f3
$\frac{\mathrm{E}_{1} \mathrm{I}_{1}}{\mathrm{~W}_{1} \mathrm{~L}_{1}^{3}}$
$\times \mathrm{J}$
imr, el
$x L_{0}$
$\frac{\mathrm{E}_{1} \mathrm{I}_{1} \mathrm{JL}_{0}}{\mathrm{~W}_{1} \mathrm{I}^{3}}$
idv, bI
$\div E_{0} I_{0}$
$\frac{E_{1} I_{1} J_{0}}{E_{0} I_{0} W_{1} L_{I}^{3}}$
imr, e $3+c$
imr, e8

$$
\times\left(\frac{I}{2}+\frac{I}{q}\right) \quad \frac{E_{I} I_{I} J_{0}}{E_{0} I_{0} W_{I} I_{1}^{3}}\left(\frac{I}{2}+\frac{I}{q}\right)
$$

imr, al
$\frac{E_{1} I_{1}}{W_{1} L_{1}^{3}}$
$\frac{E_{1} I_{1} J}{W_{1} L_{1}^{3}}$
its, 55

$$
x\left(\frac{\pi}{180}\right)^{4} \quad \frac{E_{I} I_{I} J_{0}}{E_{0} I_{0} W_{I} I_{1}^{3}}\left(\frac{I}{2}+\frac{I}{q}\right)\left(\frac{\pi}{180}\right)^{4}
$$

$$
\frac{E_{I} I_{I} J_{0}}{E_{0} I_{0} W_{1} I_{I}^{3}}\left(\frac{I}{2}+\frac{I}{q}\right)\left(\frac{\pi}{I 80}\right)^{4}
$$

This group of orders assigns a value to the flad m4. The value used is that contained in $d 3$ which for this problem was 135. This number was selected because we wanted β to vary from 90° to 360° in as small an increment as possible to increase the accuracy. Due to limitations on the magnetic tape output the smallest increment feasible was 2°. The first instruction is used to select the Whirlwind mode since the transfer of digits as indicated by the third instruction cannot be performed in the cs mode. The fourth order is used to return to the cs mode before proceeding with the remainder of the program.

The last instruction is used to select a new cycle counter. This instruction permits a loop within a loop to be performed. In the preceeding group of instructions counter zero was used and is stepped once each time the sequence is performed, but a different counter is used to allow the following sequence to be performed, and counted, a specified number of times without interfering with the previous counter.

Order	Input to MRA	In MRA	$\begin{aligned} & \text { Transfer } \\ & \text { from MRA } \end{aligned}$
OUT			
ca, d3	135	135	
td, m4		135	135

IN
is, cl

This group of orders will calculate the frequency and print the result on the magnetic tape output device. This operation will be
performed 135 times, indicated by the first order, for each cycle of the main program. The second through the fifth orders calculate β^{2} and β^{4} and store them in gl and g2 respectively. The frequency is then found by multiplying C_{f} by β^{2}. The last instruction is an order to the computer selecting the output device and giving the information necessary to print the frequencies in a column, the number of digits desired, etc.

Order	Input to MRA	In MRA	$\begin{aligned} & \text { Transfer } \\ & \text { from MRA } \end{aligned}$
m4, icr			
h7, ica, e6	90°	90°	
imr, e6	$\times 90^{\circ}$	$\left(90^{\circ}\right)^{2}$	
its, gl		$\left(90^{\circ}\right)^{2}$	β_{2}
imr, gl	$\times\left(90^{\circ}\right)^{2}$	$\left(90^{\circ}\right)^{4}$	
its, g2		$\left(90^{\circ}\right)^{4}$	β_{4}
ica, f6	$\frac{\pi}{2(I 80)} \sqrt{2} \sqrt{\frac{E_{1} I_{1} g}{W_{I} L_{I}^{3}}}$	$\frac{\pi}{2(I 80)} \sqrt{\frac{E_{I} I_{I} g}{}}$	
inr, gl	$x\left(90^{\circ}\right)^{2}$	$\frac{\pi(90)^{2}}{2(180)^{2}} \sqrt{\frac{E_{I} I_{1} g}{}} \frac{W_{I} I_{I}^{3}}{}$	

imoap 1234.56 ssss

This group of orders will calculate the moment at the inboard end of the tail shaft, $m_{0 I}$, and store the results in $g 5$. This operation will also be performed 135 times for each cycle of the main program.
ϕ_{W} and ϕ_{J}, both functions of β are computed first and stored in g 3 and g 4 respectively. Using the formula in the ilow-chart they are conbined to calculate m_{01}. It should be noted that this and the preceeding calculations do not require more than two double length registers to store the results. In the frequency calculations the results are printed out as soon as they are obtained. Here the results stored in g5 are used jmmediately in the subsequent calculations after which they are no longer desired. Therefore, the $m_{0 I}$ calculated is lost as each succeeding moment is determined.

Order	Input to MRA	$\text { In MRA } \quad \frac{\text { Transfer }}{\text { from MRA }}$
ica fl_{4}	$\frac{W_{p} L_{0}^{3} E_{I} I_{I}}{W_{I} L_{1}^{3} E_{0} I_{0}}\left(\frac{\pi}{I 80}\right)^{4}$	$\frac{W_{D_{0}}{ }^{3} E_{I} I_{I}}{W_{I} L_{I}^{3} E_{0} I_{0}}\left(\frac{\pi}{180}\right)^{4}$
imr g2	β^{4}	$\frac{W_{p} I_{0}^{3} E_{I} I_{I}}{W_{I} I_{I}^{3} E_{0} I_{0}}\left(\frac{\pi \beta}{180}\right)^{4}$
its g3		$\frac{W_{p} L_{I}^{3} E_{I} I_{I}}{W_{I} L_{I}^{3} E_{0} I_{0}}\left(\frac{\pi \beta}{180}\right)^{4} \quad \phi_{w}$
ica 15	$\frac{E_{I} I_{I} I_{0}}{E_{0} I_{0} W_{1} I_{I}^{3}}\left(\frac{I}{2}+\frac{I}{q}\right)\left(\frac{\pi}{I 80}\right)^{4}$	$\frac{E_{1} I_{I} J_{0}}{E_{0} I_{0} W_{I} I_{1}^{3}}\left(\frac{I}{2}+\frac{I}{q}\right)\left(\frac{\pi}{180}\right)^{4}$
imr e6	β	$\frac{\mathrm{E}_{1} I_{I} \mathrm{JL}_{0}}{\mathrm{E}_{0} I_{0} W_{I} I_{1}^{3}}\left(\frac{I}{2}+\frac{I}{q}\right)\left(\frac{\pi}{I 80}\right)^{4} \beta$
its g4		$\frac{E_{I} I_{I} J_{0}}{E_{0} I_{0} W_{I} I_{I}^{3}}\left(\frac{I}{2}+\frac{I}{q}\right)\left(\frac{\pi}{180}\right)^{4} \beta \quad \phi_{J}$

Order	Input to MRA	In MRA	$\begin{aligned} & \text { Transfer } \\ & \text { from MRA } \end{aligned}$
(continued)			
ica g3	$\phi_{\text {W }}$	$\phi_{\text {W }}$	
idv el2	$\div 3$	$\frac{\phi_{W}}{3}$	
its tI		$\frac{\phi_{\text {W }}}{}$	$\frac{\phi_{\text {W }}}{}$
idv el3	$\div 4$	$\frac{\phi_{\mathrm{W}}}{12}$	
$\operatorname{imr} \quad \mathrm{g} 4$	$x \phi_{J}$	$\frac{\phi_{W} \phi_{J}}{12}$	
iad Ih9	+ I	$I+\frac{\phi_{W} \phi_{J}}{I 2}$	
isu tI	$-\phi_{W}$	$I+\frac{\phi_{W} \phi_{J}}{12}-\frac{\phi_{W}}{3}$	
isu g4	$-\phi_{J}$	$I+\frac{\phi_{W} \phi_{J}}{12}-\frac{\phi_{W}}{3}-\phi_{J}$	
its t2		$1+\frac{\phi_{W} \phi_{J}}{12}-\frac{\phi_{W}}{3}-\phi_{J}$	$I+\frac{\phi_{W} \phi_{J}}{12}-\frac{\phi_{W}}{3}-\phi_{J}$
ica tl	$\frac{\phi_{\text {W }}}{}$	$\frac{\phi_{\text {W }}}{3}$	
imr g 4	$\times \phi_{J}$	$\frac{\phi_{\mathrm{W}} \phi_{\mathrm{J}}}{3}$	
isu g4	$-\phi_{J}$	$\frac{\phi_{\mathrm{v}} \phi_{\mathrm{J}}}{3}-\phi_{\mathrm{J}}$	

This group of orders will first convert the value of β currently stored in e6 from degrees into radians and store the result in e7. The last two orders will place the initial value of θ_{01}, which is assumed as unity, in g9.

Order	Input to MRA	In MRA	$\frac{\text { Transfer }}{\text { from MRA }}$
ica e6	β	β	
imr el	π	$\pi \beta$	
idv e2	$I 80$	$\frac{\pi \beta}{180}$	
its e7		$\frac{\pi \beta}{180}$	$\frac{\pi \beta}{180}$
ica Ih9	1	I	
its g9		1	θ_{01}

This group of orders will calculate various parameters, such as $\cos \beta$, $\sin \beta$ and store them temporarily for future use in the calculation of end moments. The first instruction selects a third counter to be used for this and subsequent calculations. This is done for the same reason as before, to permit this sequence to cycle three times, once for each inboard span, without affecting the cycle count of the previous loop. The second instruction sets the number of times the loop is to cycle. This number equals the number of spans since $m 3$ takes its valud from d3 which is the flad assigned for the number of spans. The manner in which the subroutines are utilized is shown here and their advantage becomes evident.

This group of orders will calculate the parameters si, sh, sh, and store the results in g6, g7, and g8 respectively. This operation will be repeated three times, once for each span, since the first two orders of the previous section are still in effect.

$$
\begin{aligned}
& \text { Order Input to MRA In MRA } \frac{\text { Transfer }}{\text { from MRA }} \\
& \text { ipa ur } \\
& \sin \beta_{1} \quad \sin \beta_{1} \\
& \operatorname{imr} u_{4} \quad x \cosh \beta_{I} \quad \sin \beta_{I} \cosh \beta_{I} \\
& \text { iss ur } \quad-\cos \beta_{I} \sinh \beta_{I} \sin \beta_{I} \cosh \beta_{1}-\cos \beta_{I} \sinh \beta_{1} \\
& \text { inv } \mathbf{1 5} \div \sinh \beta_{I}-\sin \beta_{I} \frac{\sin \beta_{1} \cosh \beta_{1}-\cos \beta_{I} \sinh \beta_{1}}{\sinh \beta_{1}-\sin \beta_{I}} \\
& \text { its gl } \\
& \frac{\sin \beta_{1} \cosh \beta_{1}-\cos \beta_{I} \sinh \beta_{I}}{\sinh \beta_{1}-\sin \beta_{1}} S_{1} \\
& \text { icj ur } \quad \sinh \beta_{1} \quad \sinh \beta_{1} \\
& \text { iss ur } \quad-\sin \beta_{1} \quad \sinh \beta_{I}-\sin \beta_{I} \\
& \text { nmr e? } \\
& X \beta_{1} \\
& \beta_{I}\left(\sinh \beta_{I}-\sin \beta_{I}\right) \\
& \text { its } u 5 \\
& \beta_{I}\left(\sinh \beta_{I}-\sin \beta_{I}\right) \quad \beta_{I}\left(\sinh \beta_{I}-\sin \beta_{I}\right) \\
& \text { iss ul } \quad-\cos \beta_{1} \\
& -\cos \beta_{1} \\
& \text { nmr u } \quad x \cosh \beta_{I} \quad-\cos \beta_{1} \cosh \beta_{I} \\
& \text { ind lh }+1 \quad l-\cos \beta_{1} \cosh \beta_{1} \\
& \text { ido ur } \div \beta_{I}\left(\sinh \beta_{I}-\sin \beta_{I}\right) \frac{I-\cos \beta_{I} \cosh \beta_{I}}{\beta_{I}\left(\sinh \beta_{I}-\sin \beta_{I}\right)}
\end{aligned}
$$

Order	Input to MRA	In MRA	$\begin{aligned} & \text { Transfer } \\ & \text { from MRA } \end{aligned}$
	(continued)		
its g7		$\frac{1-\cos \beta_{1} \cosh \beta_{1}}{\beta_{1}\left(\sinh \beta_{1}-\sin \beta_{1}\right)}$	S 2
ica u3	$\sinh \beta_{1}$	$\sinh \beta_{1}$	
isu u2	$-\sin \beta_{1}$	$\sinh \beta_{1}-\sin \beta_{1}$	
its $u 5$		$\sinh \beta_{1}-\sin \beta_{1}$	nh $\beta_{1}-\sin \beta_{1}$
ica elo	2	2	
imr e7	$\times \beta_{1}$	$2 \beta_{1}$	
imr u2	$x \sin \beta_{1}$	$2 \beta_{1} \sin \beta_{1}$	
imr u3	$x \sinh \beta_{1}$	$2 \beta_{I} \sin \beta_{I} \sinh \beta_{I}$	
idv u5	$\div \sinh \beta_{1}-\sin \beta_{1}$	$\frac{2 \beta_{I} \sin \beta_{7} \sinh \beta_{I}}{\sinh \xi_{I}-\sin \beta_{I}}$	
its g8		$\frac{2 \beta_{1} \sin \beta_{1} \sinh \beta_{1}}{\sinh \beta_{1}-\sin \beta_{1}}$	S_{3}

This group of orders will calculate the end moments and the angle of rotation at the inboard end of the shaft selected. The previous results stored in g 5 , namely m_{01}, and previously calculated values of $\theta_{\text {OI }}$, sl, s2, s3 are combined into the formulas shown in the flow chart to determine the values at the end of the second section, m_{12}. This process is repeated three times to produce m_{34}, the moment we are looking for. θ_{34} is also determined although it is not utilized.

The method of saving registers that is used in this section should be noted. m_{01} is in g 5 . As each successive moment is calculated it too is put in g5. The preceeding moment is lost by this process, but it is of no importance since only the final end moment is required.

The last six orders have a different function. The first five of these are utilized to calculate the value of β_{2} for the next span which is used in the calculation of the moment and sl, s2, s3. The relation of β and β_{2} is shown in the flow chart.

The last order is used to cycle the program back to h8. ict causes the computer to return to $h 8$ and at the same time increases the index of the cycle counter by one. When the index equals the number previously set in the criterion by an icr instruction ict will reset the index to +0 and pass control to the instruction immediately following.

Order		Input to MRA	In MRA	Transfer
				from MRA
ica	g5	m_{01}	m_{01}	
its	g10		m_{01}	${ }^{\mathrm{m}} 01$
ics	g5	$-\mathrm{m}_{01}$	-mol	
imr	g6	$x S_{I}$	$-\mathrm{m}_{01} \mathrm{~S}_{1}$	
its	uI		$-\mathrm{m}_{01} \mathrm{~S}_{1}$	$-\mathrm{m}_{01} \mathrm{~S}_{1}$
ics	$\mathrm{f} 2+\mathrm{c}$	$-{ }_{-}$	$-\mathrm{Ca}$	
imr	g8	XS_{3}	$-\mathrm{C}_{\mathrm{a}} \mathrm{~S}_{3}$	
imr	g9	$x \theta_{01}$	$-\mathrm{Ca}_{2} \mathrm{~S}_{3} \theta_{01}$	

Order	Input to MRA	In PRA	$\begin{aligned} & \text { Transfer } \\ & \text { from MRA } \end{aligned}$
	(continued)		
iad uI	$-\mathrm{m}_{01} \mathrm{~S}_{1}$	$-\mathrm{Ca}_{\mathrm{a}} 3^{\theta} 01^{-\mathrm{m}_{01} \mathrm{~S}_{1}}$	
its g5			m_{12}
ics gl0	$-\mathrm{m}_{01}$	-mol	
imr g7	$\times \mathrm{S}_{2}$	$-m_{01} S_{2}$	
idv f2+c	$\div C^{-}$	$\frac{-\mathrm{m}_{01} \mathrm{~S}^{2}}{\mathrm{c}}$	
isu g6	$-S_{1}$	$\frac{-\mathrm{m}_{01} \mathrm{~S}_{2}}{\mathrm{C}_{\mathrm{a}}}-\mathrm{S}_{1}$	
its g9		$\frac{-\mathrm{m}_{\mathrm{O1}} \mathrm{~S}_{2}}{\mathrm{c}_{\mathrm{a}}}-\mathrm{S}_{1}$	θ_{12}
ica $\quad 17+c$	C_{β}	C_{β}	
imr e6	$\times \beta$	$C_{\beta} \beta$	
imr el	$x \pi$	$\pi C_{\beta} \beta$	
idv e2	$\div 180$	$\frac{\pi}{180} C_{\beta} \beta$	
its e7		$\frac{\pi}{180} C_{\beta} \beta$	β_{2}

This group of orders will print out the contents of g5, which are the moments at the inboard end of the shaft. The first instruction
is used to return the counting of cycles back to the 135 . This is done since we want 135 end moments printed, or one for each β value used.

Order	Input to MRA	In PRA
isc 1		
ica 95	$\mathrm{~m}_{3}$	
imoa +p	$1234.56 \times 10^{-6} \mathrm{c}$	

This group of orders does several things which will be discussed in the order of their occurance.

The first three orders are used to increase the value of β in e6 by 2° before the next cycle starts. This operation is performed 135 times also, the β starts at 90° and goes to 360° in steps of 2°. The fourth order is used to break the normal sequence and add a correction before returning to the main program, a process known as patching. The correction added is given below. The first instruction is merely a new flad used to get the number +1.0 in the computer. The second instruction increases the index of counter 1 by one and performs the same function as explained above, namely, permit this part of the program to cycle 135 times. The third and fourth instructions are merely to print a series of zeros in the print out to separate the results into blocks of 135 lines of frequency vs. moment for each order being investigated. The last instruction is to pass control to the next patch.
Order
ica e6
iad el0
its e6
isp 3h9
isp hl2
ict h6
h9, i STOP
START AT h 1
Ih91+1.0
ict $h 7$
ica $\ln 9+1.0+1.0$
imoa+1234cc
isp-2h9
β
$\beta+2$
$\beta+2$
$\beta+2$

This group of orders will do several things. First it passes control to the flad hl2 which introduces the subroutine of resetting the value of β to 90° at the completion of the program for one order. Then counter zero is selected to begin calculations for the next order. The instruction OUT is used to enter the Whirlwind mode and the next three instructions are used to increase the address of Lh6 by two. This is normally done automatically by the use of counters and $+c$ at the end of each instruction. However, difficulty was encountered and this "manual" stepping was used to save time. The last two instructions are used to return to the CS mode and the main program at one instruction before h9.

Order Input to MRA In MRA $\quad \frac{\text { Transfer }}{\text { from MRA }}$
hll, $+90,0$
$-2 h 9 / i s p \quad h 12$

hl2, ica hII	+90.0	+90.0
its e6		+90.0

calin6
285
285
ade 17 +1 286
ade $11+1287$
ts 4 in 6287
$+90,0$

4 n 6

IN
isp h9-1

The main program is reentered as explained above and the last three instructions listed below are performed. The first increases the index of counter zero by one and when the entire program has been repeated three times passes control to the second instruction which stops the computer.

The last instruction is used to start the calculations at the proper place. It is always the last instruction fed into the computer since the computer scans the entire program, locates the flads and stores the information before it starts. If this instruction were anywhere else the computer would start computing before all the information was fed into it and properly stored.

Order	Input to MRA MRA	$\frac{\text { Transfer }}{\text { from MRA }}$
ict h6		
h9, i STOP		
START AT hl		

PROGRAM OF STRESS CALCULATIONS OF NON-SYMETRICALIY IOADED TRANSVERSE WEB FRAME

The working program of the web frame stress calculations will consist of a series of sub-routines joined together by a sequence control program (see Figure V). To facilitate programming and program alteration, the instructions and input data were placed in four separate sections and these sections were represented by the flexowriter tape number that contained the instructions on data. Scantling data and other information relating to a particular problem were placed in tape 359-217-100. The sub-routines were placed in 359-217-101, and, the sequence control programs were placed in 359-217-221 and 359-217-222. Calculations for a different though similar ship will require the complete chancing of tape 359--217•100. Tape 359-217-101 is general for similar problems. Tapes 359-217-221 and 222 determine the nature of the calculations, that is whether a check calculation or a design calculation will be calculated.

In the instructions for the input data in tape 359-217-100 absolute addresies were assigned to flads. The absolute addresses were necessamy for block in, bl out procedures used in the auxiliary storare drum. The use of flads is still retained due to the ease of writinc and cateporizing letters. The flad and absolute address assignments for storape of generated data were also placed in tape 359-217-101.

The following list of data are the specific input data for a DP type vessel. Due to the quantity of numbers in each ategory, only a sample of the total group is presented belowc

> fc Tape $359-217-100$ $(24,6)$
$32 \mid x 7,+00.00^{\prime}$
$+3.266^{1}$
$+6.508^{\prime}$
$+9.917$

Assigns the first value of the x-coordinate of the shell to register 32 which is the first register in the case memory. Note that the coordinates are in feet measured from the origin at the keel centerline.

Total of 25 double length numbers which occupy 50 registers.

	+0.000
$82 \mid y I_{3}$	$+00.00^{\prime}$
25 number	
	+26.33
$332 \mid \mathrm{bl}$,	+24.00

Value at the main deck centerline. First value of y-coordinates of the shell.
y-coordinate of main deck centerline。
Value of web depth (d_{W}) at the origin measured in inches. First value stored in register 332 。

25 numbers
$+12.00$
$282 / \mathrm{b} 2,+0.3125$
25 numbers
$\div 0.2500$
482|b3, $4.12 . \quad$ Width of flange (W_{f}) measured in inches,
25 numbers
4.0
$432 / b 4 s+0.500$
Flange thickness ($t_{\mathbf{P}}$) measured in inches.
25 numbers
$+0.250$
$382 / 65, * 0.7500$
Shell thickess (t_{s}) in inches.
25 numbers
$+0.375$

The following instructions are the sequence controi instructions and serve to utilize various sub-routines to perform the calculations of stresses for a web frame of one particular set of scantlings and load
conditions. To alter the web frame and to produce a rational design, another set of instructions designated tape number 359-217-222 will be required.

$$
\begin{gathered}
\text { fc 359-217-221 (Name of tape) } \\
(24,6)
\end{gathered}
$$

(Selects number arrangement of double length registers. This arrangement utilizes 24 binary numbers for the mantissa and 6 binary digits for the exponent of the number).

pl,	isp gl	gl forms $\sin \theta, \cos \theta$ and Δs
isp	g2-2	g2-2 forms horizontal and vertical water loads H_{W}, V_{W} 。
isp	glo-2	glo-2 forms the total vertical loads by summing the values of the weights and vertical water loads.
isp	g3	g3 forms $\sin \phi$ and $\cos \phi$.
isp	g4	Forms the reciprocal of the moment of inertia ($I / I_{\mathrm{IT}} . \mathrm{A}_{0}$), of the section (A_{t}) and distance from the shell to the neutral axis ($d_{\mathbb{N} . A}$.).
OUT		The following orders are block out instructions for transferring information from the case memory to the auxiliary drum.
ca	c8	2048 (Address of first register of the drum storage block).
si	967	Selects case output routine to the auxiliary drum.
ca	c12	800 (Number of registers necessary for storage).
bo	32	(Case memory address of the first register being blocked out).

IN
isp g6-2 Offsets the x and y coordinates of the neutral axis from the shell coordinates.

isp	g 1	Forms $\sin \theta$ and $\cos \theta$, and Δs of neutral axis.
isp	g3	Forms sin χ^{\prime}, and $\cos \phi$ of neutral axis.
ica	c6	$+0.0+0.0$
its	t4	+0.0
its	b3	+0.0
isp	g7	Forms m/I at each station due to applied loads,
isp	g9	Forms integrals of m_{0}, p_{0}, q_{0}, R and S, into a matrix (See Figure VI).
isp	g23-2	Uses Crout's method to solve the matrix.
isp	g24-1	Alters V and H to include redundants $\mathrm{V}-\mathrm{q}_{0}$, $\mathrm{H}+\mathrm{p}_{\mathrm{O}}, \mathrm{R}+\mathrm{V}$ and $\mathrm{V}+\mathrm{S}$ 。
ica	d $7+50$	$+\mathrm{m}_{0} \quad+\mathrm{m}_{0}$
its	t4	$+m_{0}$
imr	d3	$I / I_{0} \quad m_{0} / I_{0}$
its	b3	m_{0} / I_{0}
isp	g7	Forms moments at each station. This moment includes the effect of the redundants

OUT
ca clo
si 963
ca $\mathrm{cl7}$
bi 332
ca cll

2348 - Drum address of the first register of the drum storage.

Selects "block-in" procedure for transferring data from the drum to the case memory.
+150 - Nurnber of registers beine "blocked in." Blocks in d_{W}, t_{S} and t_{f} 。

Address of the first register in the core memory that will receive the first number moved in from the drum.
+2748 - Address of the first register of the drum storage.

si 963	Selects "block in" routine from the drum storage.
ca cI8	$+50-$ Blocks in 50 registers of information of $d_{N, A}$.
bi 732	Address of the first register in the core memory that will contain $\mathrm{d}_{\text {N.A. }}$.

IN
p2, isp g25-1 Forms $\sigma_{a}, \sigma_{b}, \sigma_{f}$ and σ_{s} for all stations around the girth,

The following instructions, called tape 359-217-222 perform the stress calculations for a web frame for a given set of scantlings and compare the computed stresses with allowable stresses. If the computed stresses do not fall within the range of allowable stresses, then the instructions below will alter the scantlings of the web frame to produce the desired stresses. For this program the scantlings are altered by increasing or decreasing the width of the flange. Notice that tape 359-217-222 repeats all the instructions contained in 359-217-221 and in addition contains a method of altering the flange. While this may seem unnecessarily repetitious, two complete sequence programs were deemed more convenient to handle and less susceptible to error than one partial tape with a connective addition.
fc 359-217-222
$(24,6)$

pl, isp gI	gl forms $\sin \theta, \cos \theta$ and Δs,
isp g2-2	$g 2-2$ forms V_{W} and H_{W}
isp glo-2	$g 10-2$ forms ∇_{t}
isp g3	$g 3$ forms $\sin \phi$ and $\cos \phi$.
isp g4	$g 4$ forms $I / I_{N, A .}, A_{t}$, and $d_{N . A .}$

ca c8	2048 - Drum Address.
si 967	Selects drum output routine,
ca cl2	800- Wrmber of registers heinf transferred.
b0 32	Core memory: address of first register being blocked out.
IN	
isp g6-2	
isp gl	$\sin \theta, \cos \theta$, and Δs of neutral axis.
isp g3	$\sin \phi$ and $\cos \phi$ or neutral axis,
ica c6	+0.0 +0.0
its th	+0.0
its b3	+0.0
isp g7	Forms m_{n} / I at each station
isp ${ }^{\text {g }}$	Forms integrals of m_{0}, p_{0}, q_{0}, R and S. (See Figure VI).
isp g23-2	Matrix solution.
1sp g24-1	Alters loads to jnclude redundants. q_{0}, p_{0}, R and S.
ica dl +50	$+\mathrm{m}_{0} \quad+\mathrm{m}_{0}$
its t_{4}	${ }^{+m} 0$
imr d3	$1 / \mathrm{I}_{0} \quad \mathrm{~m}_{0} / \mathrm{I}_{0}$
its b3	m_{0} / I_{0}
isp g7	Forms monents ateach station,
OUT	
ca clo	2348 - Drum address.
si 963	Selects "block in" from drum internal routine.
ca cl7	+150 - Number of registers being blocked in.

bi 332	Address of first register in core memory to receive block in from drum.
ca cll	2748-Drum address of first register in "block in" group.
si 963	Selects "block in" internal routine.
ca cl8	+50-Number of registers being blocked in.
bi 732	Address of first register in core memory to receive blocked in data.
IN	
$\begin{aligned} & \text { isp g25-1 } \\ & \text { out } \end{aligned}$	Forms $\sigma_{a}, \sigma_{b}, \sigma_{f}$ and σ_{s} for all station。
ca. c19	+2498-Drum address of first register to be blocked in.
si 963	Selects "block in" internal routine.
ca. cl8	+50-Number of registers being blocked in.
bi 482	Core address of first register receiving blocked in data.
$\begin{aligned} & \text { a. } 976 \\ & \text { cp } p 2-4 \end{aligned}$	Forms counter bo limit number of alteration cycles to 3(1 + number in 976).
sp0	Stops computer after completion of 3 cycles
IN	
ica c3	-1.0 -1.0
its t3	-1.0

Note that the above counter was used for the test runs of this program. In any case the alteration procedure should be limited to prevent the possibility of the computer obtaining an unreasonable answer. As an example, should the web frame be to large the web flange can be reduced by predetermined amounts. However, large reductions could give a negative length of flange. A future programmer may want to change the value used
in the counter and therefore the number of cycles. However a counter must be used in all cases.

Now it becomes necessary to compare the values of the computed stresses with allowable values. To do this the computed values must be plus and a small program must be written to insure that all values are plus. Also, the maximum stress value at each point of equal scantlings must be determined. Remember that the web frame is symmetrical port and starboard, but the values of stress are not symmetrical. After determining the maximum value of stress at each station, the values are compared with allowable values and the scantlings altered.
ict pal

p 2, ica e^{5+c}	$+\left(\sigma_{f}\right) \quad \sigma_{f}($ starboard side $)$
icp ml	If σ_{f} is minus perform sub-routine mI. If
	plus, do next instruction。

its tI

$$
+\sigma_{f} \quad+\sigma_{f}(\text { port side })
$$

ica e $^{5}+\mathrm{pb} 8+\mathrm{pb} 8$
Checks sign of σ_{f} 。
its t2 $+\sigma_{f}$
isu tI
$-\sigma_{f}($ starboard $) \quad \sigma_{f}($ port $)-\sigma_{f}($ starboard $)$
icp m2
ica t2
p3, isu c20
Checks sign of $\sigma_{f}($ port $)-\sigma_{f}($ starboard $)$ and if minus, goes to m2.
$+\sigma_{f}$
$+\sigma_{f}$
$-(+20,000)$
$\sigma_{f}-(+20,000)\left(\begin{array}{l}\text { Lower value of stress } \\ \text { limit). }\end{array}\right.$
liment
icp m3
If $\left(\sigma_{f}-20,000\right)$ is minus, go to $m 3$ to reduce scantling values.

isu c21	-8000	$\left(\sigma_{f}-20.000\right)-8000\left(8000 / \mathrm{in}^{2}\right.$ is the range of stresses).
icp p4	If value is min moves forward	s, perform sub-routine pl which the next station.
ica b3+c	$+_{\text {+ }}^{f}$	$+_{\text {w }}{ }_{\text {f }}$
iad cl	+. 5	$\mathrm{w}_{\mathrm{f}}+.5$ (Increases flange width).
its b3+c		$w_{f}+{ }^{\text {o }}$
ics c3	-(-1.0)	+1.0
its t3		+1.0
p4, OUT		
ca $\mathrm{p} 2+3$	ica e5 $^{\text {+pb }} 8+\mathrm{pb} 8$	ica e5tpb $8+\mathrm{pb} 8$
su c7	-2	ica ${ }^{5} 5+\mathrm{pb} 8+\mathrm{pb} 8-2$
ts $\mathrm{p} 2+3$		ica ${ }^{5} 5+\mathrm{pb} 8+\mathrm{pb} 8$

IN

ict p2
ica t3
-1.0
-1.0
icp p6
ouT
ca cl9
si 967
ca cl8
bo 482
ca c8
si 963
ca cl2
+2498-Drum address register.
Selects drum block out procedure.
+50-Number of registers being blocked out.
Core memory address of first register of group being blocked out.
+2048-Drum address register of first number in a group being blocked in.

Selects drum block in procedure.
800-Number of registers being blocked in。

ca cl2	+800	+800	
ad cl7	+150	+950	
ad c2	+30	+980	
ts t8			+980
ca t8	+980		
si 963	Selects drum block in procedure.		
ca cl2	+800		
bi 980			

The two block in procedures put numbers and instructions back into the core memory in preparation for another cycle of stress calculations of the altered scantlings. The block out instruction prior to the block in instructions puts new values of web flange width into the columns of numbers on the drum. The first block in instruction moves numbers into the core memory. The second block in instruction came as a result of "debugging" operations when it was determined necessary to replace all the addresses in the instructions back to their starting value involving the port side it was necessary for the programmer to write instructions that would decrease the addresses of the registers containing the starboard side values. In other words it was necessary to move up a column of numbers in the core memory. At the beginning of the second cycle
the instruction addresses were in error by a number equal to the number of cycles in that particular sub-routine. By blocking in the original instructions which remain on the drum into their assigned positions all the addresses were reset to their original value.

For cycles within a basic cycle of operations it is necessary to write a reset routine that returns the addresses back to their original values at the end of each inner cycle.

IN

isp g4
isp pl+1l

Starts cycle at g4.

These two instructions skip the block out procedure in the main cycle. Since the block out has occured during the first cycle, the values remain in the drum and need not be blocked out again.
p6, i STOP

The following sub-routines are used in conjunction with the comparison and alteration sequence.
ml , ita $\mathrm{ml}+2$

imr c3	$\left(-1.0 x-\sigma_{f}\right)=+\sigma_{f}$
	(Makes σ_{f} plus)。

isp
m2, ica tl
$+\sigma_{f}$
$+\sigma_{f}($ starboard $)$
isp p3
m3. ica b3+c

$$
{ }^{+w_{f}}
$$

$+W_{f}$
isu cl
$-.5$
$W_{f}-05$
its b3+c
$W_{f}=.5$
isp p3+7
cl9,
c20,
c 21,
$+2498-$ Drum address.
$+20,000.0$ Lower limit of allowable stress value.
$+8,000$. 0 -Range of allowable stress values.
Note that for this problem a very wide range of values was used to prevent the possibility of the computer seeking an impossible solution. If the stress change caused by the flange alteration were to be larger than the stress range, then a solution would be impossible with this program.

976-2
i START AT pl

In programming it is necessary to use various constants to change units, to form equations and to change generated values by arithmetic
.
manipulations. These constants must be assigned registers or ilads to be of use in the program. The constants listed below were assigned flad cl, c2, etc., the c being useful in remembering the nature of the input.

> Tape fc $359-217-101$
> $(24,6)$
cl, +0.0

$c 2,+30.0$	A constant used to form the width of shell plating which is considered to be effective in forming the web bearn
$c 3,-1.0$	A constant useful in changing the sign of a value in the IRA.
$c 4,+1.5$	Used in calculation of the moment of inertia.
$c 5,+64.0$	Weight of a cubic foot of sea water in Ibs/ft ${ }^{2}$.
$c 6,+0.0$	Used to clear registers where the value in the

c7, +2
Whirlwind number used in changing addresses in the interpreted mode.
c8, +2048
c9, 2850
cl0, +2348
cll, +2748
cl2, +800
cl3, +216
cll ${ }_{8}+1$
c15, +12.0
cl6, +0.707
cl7, +150
cl8, +50
tl, through t_{f},
A Whirlwind number used to assign addresses on the auxiliary drum.

Number of registers in a blockout procedure.

Whirlwind number used in changing addresses.
Converts feet or inches to inches or feet.
I/ $2=\sin 45^{\circ}$ or $\cos 45^{\circ}$ 。
Number of registers in block out procedures:
+0.0 - Temporary registers for calculations.

The following preset parameters are part of the inputs tit do not vary with vessel type. Note that each preset paraneter lister beiow is generated from the present parameters in the variable input tape.

```
pbl = pal-l Number of segments in the half rirth of a
    web frame.
pb2 = pal-2 Two less than the number of stations on a half girth.
    Used in moment formation.
pb3 = pa2-1 Number of segrnents between the oririn and deck edpe.
pb4 = pa3 +pa3-2 Number of registers from the origin register to
    the bottom of the starboard stanchion.
```

 Also contained in Tape 359-217-101 are the storage assign-
 ments for generated numbers.

$\left.132\right\|_{\text {DITTO }}+0.0$	Sine of the angle storase. Note that this instruction puts zeros in 25 double length
$48+0.0$	registers.
$\begin{aligned} & 182 \mid \mathrm{az},+0.0 \\ & \text { DITTO } \\ & 48^{+0.0} \end{aligned}$	Cosine storage.
$\begin{aligned} & 232 \mid a 5,+0.0 \\ & \text { DITTO } \\ & 48+0.0 \end{aligned}$	Girth segment lengths storage
$\begin{aligned} & 532 \mid \mathrm{eL},+0.0 \\ & \text { DITTO } \\ & 48+0.0 \end{aligned}$	Storage for vertical water loads.
$\begin{gathered} 582 \mid \mathrm{e} 3,+0.0 \\ \text { DITTO } \\ 48+0.0 \end{gathered}$	Storage for horizontal water loadse
$\begin{gathered} 832 \mathrm{1d3},+0.0 \\ \text { DITTO } \\ 48+0.0 \end{gathered}$	Storage for the inverse of the moment of inertia $I^{\prime} I_{N_{0} A_{2}}$

```
882 d2, +0.0
    DITTO
    48 +0.0
732 dl, +0.0
    DITTO
    4.8+0.0
```

782 sl,

Library sub-routine for finding square roots.

The remainder of tape 359-217-101 consists of the various sub-routines that perform the functions listed in the flow diagran, Figure V_{0} A discussion of each sub-routine is placed at the beginning of the list of instructions that comprise the sub-routine.

The form of presentation of the following sub-routines was found to be an aid in the organization and understanding of the problem. Since continuity of thought is so important to the writing of a workable program, the increased effort in writing the flow of information into the MRA, accumulation of data in the IRA and the values transferred from the MRA was considered worthwhile. Other methods of organizing material could have been used; however, the authors found that this method was both effective and presented the ideas in a convenient form.

The following subroutine forms the $\sin \theta$ and $\cos \theta$ of the frame segments by the use of the basic equations listed below.

$$
\begin{aligned}
\Delta s_{n} & =\Delta x_{n}^{2}+\Delta y_{n}^{2} \\
\Delta x_{n} & =x_{n}-x_{n-1} \\
\Delta y_{n} & =y_{n}-y_{n-1} \\
\sin \theta & =\Delta y / \Delta s \\
\cos \theta & =\Delta x / \Delta s
\end{aligned}
$$

Instruction
Input to MRA

In MRA
Transfer from MRA
gl, ital $g l+21$ This instruction transfers the address in the control element to the address of the instruction in gl+2l and adds one. (See glossary of instructions),
ier bbl Sets the cycle count to the number of segments on the side of the frame. This routine will be performed bbl times
inca $x l+2+c$
is xl +c

$+X_{n}$

$$
-x_{n-1}
$$

$$
x_{n}-x_{n-1}
$$

its tl

$$
\Delta x_{n}
$$

ir
tI
$x \Delta x_{n}$
Δx_{n}^{2}
its
ta

$$
\Delta x_{n}^{2}
$$

Instruction		Input to MRA	In Pra	Trans
		(continued)		
ica	$y 1+2+c$	${ }^{+} \mathrm{Y}_{\mathrm{n}}$	$+y_{n}$	
isu	$y l+c$	$-y_{n-1}$	${ }^{+y_{n}}{ }^{-y}{ }_{n}$	
its	t3			Δy_{n}
imr	t3	Δy_{n}	Δy_{n}^{2}	
iad	t2	$+\Delta x_{n}^{2}$	$\Delta y_{n}^{2}+\Delta x^{2}$	

SP sl sl is a sub-routine that extracts the square root of the number in the MRA and returns the square root of the number back into MRA.

The sub-routine that follows forms the water loads from the origin to the main deck. In this sub-routine the water loads are assumed to be uniformly distributed along the shell segment and the center of pressure is assumed to act at the mid-point of the segment. After formation of the total load on the segment, the load is divided by 2 and half of the load is placed at each end of the segment. The approximation of a continuous beam under a trapezoidal shaped pressure load by a uniform load is only valid when the shell segments are small in size. As the loads are formed, the program converts the loads into horizontal and vertical components.

Instruction
Input to MRA
In MRA
Transfer
from MRA
ita $g 2+18$ (See glossary of instructions).
icr pb3 Sets cycle counter for number of segments in the starboard side from origin to deck edge.
$\begin{array}{lll}\text { g2, ics } y l+c & -y_{n} & -y_{n} \\ \text { isu } y I+2+c & -y_{n+1} & -y_{n+1}-y_{n}=-\left(y_{n+1}+y_{n}\right)\end{array}$
Input to $M \mathbb{R} A \quad$ In MRA $\quad \frac{\text { Transfer }}{\text { from } 1 \mathbb{R} A}$

(continued)

irr	cl	0.5	$-\left(y_{n+1}+y_{n}\right) / 2=-y_{\text {av }}$
iad	e2	+H(water head) (ft)	$\mathrm{H}-\mathrm{y} \mathrm{av}$
imr	c5	$\times 64 / \mathrm{ft}^{3}$	$64\left(\mathrm{H}-\mathrm{y}_{\mathrm{av}}\right)$
imr	$a 5+c$	$x \Delta s(f t)$	$64 \Delta s\left(H-T_{\text {av }}\right)=F_{w}$
imr	cl	$\times 0.5$	$F_{W} / 2$ (assumes simple support)
its	切		$\mathrm{F}_{W} / 2$
imr	$a 2+2+c$	$x(\cos \theta)_{n+1}$	$(\cos \theta)_{n+1} F_{W} / 2=\left(V_{W}\right)_{n+1}$
its	$\mathrm{el}+2+\mathrm{c}$		$\left(V_{W}\right)_{n+1}$
iad	e4+c	$V_{W_{n-1}}$	$V_{W_{n-1}}+V_{n}=V_{W}$
its	e4+c		$\left(V_{W}\right)_{n}$
ica	tl	$+\left(F_{W}\right) / n_{2}$	$+\left(F_{W} / 2\right)_{n}$
imr	$a \mathrm{l}+2+\mathrm{c}$	$+(\sin \theta)_{n}$	$\left({ }_{2}^{F_{W}} \sin \theta\right)_{n}=\left(H_{W}\right)_{n}$
its	$e 3+2+c$		$\left(H_{W}\right)_{n}$
iad	e3+c	$\left(H_{W}\right)_{n-1}$	$\left(H_{W}\right)_{n-1}+\left(H_{W}\right)_{n}=H_{W}$
its	e3+c		$\left(H_{W}\right)_{n}$
ict	g2	back to g2.	
isp		s provided by ita in	struction.

Formation of vertical forces is accomplished by the procrams listed below. Vertical forces are the algebraic addition of buoyant forces which act in the upward direction and the weight forces which act downward. Upward forces are taken as positive. Note that a separate program is required for each side. The V_{W} forces are symmetrical and can be stored in 50 registers. The weight forces are non-symmetrical and the weight for each of the stations must be stored. In the program for forming the starboard vertical forces, the addresses of the V_{W} moves down a column of registers of increasing addresses which is the manner of operation of the ell+c address. To move the other direction up a colum of numbers a small Whirlvind progran is required to reduce the addresses by 2 for each cycle.
Instruction Input to MRA In MRA $\quad \frac{\text { Transfer }}{\text { from MRA }}$
ita (See glossary of instructions).
icr pa2

glo, ica eli+c	$+V_{W}$	$+V_{W}$
iad $\mathrm{e} 5+\mathrm{c}$	$-W_{\mathrm{t}}$	$+V_{W}-W_{t}=V_{t}$

its $e 5+c \quad V_{t}$
End of starboard side program.

ica	e $4+\mathrm{c}$	$+\mathrm{V}_{\mathrm{W}}$	$+V_{W}$
iad	$e 5+\mathrm{pb} 8+\mathrm{pb} 8$	$-W_{t}$	$+V_{W}-W_{t}=V_{t}$
its	$e 5+\mathrm{pb} 8+\mathrm{pb} 8$		
			V_{t}

Goes out into Whirlwind to change addresses of weight loads.
$\left.\begin{array}{lllll}\text { Instruction } & \text { Input to FRA } & \text { In MRA } & \begin{array}{c}\text { Transfier } \\ \text { from FRA }\end{array} \\ \text { (continued) }\end{array}\right]$

IN
ict $\mathrm{glo+2}$
isp

After forming $\sin \theta$ and $\cos \theta$ of each of the segments, it was necessary to find the sin and cos of the angle ϕ formed by the tangent to the curve at each station and the horizontal axis. $\cos \phi$ and $\sin \phi$ were determined by averacing the cosines and sines of the angles of the chords on either side of the station. While it was considered to be more accurate to find the $\tan \phi$ or the slope of the curve at each station, the possibility of $\tan \phi=\Delta y / \Delta x$ becoming infinity rendered this impossible. Further, only $\sin \phi$ and $\cos \phi$ were necessary for the purposes of the procram and $\tan \phi$ would have required additional storage and programming. This implies two conditions that do not exist. One, the rate of change of angles should be equal and secondly, the

$$
\sin \frac{\left(\theta_{1}+\theta_{2}\right)}{2}
$$

does not equal

and

$$
\cos \frac{\left(\theta_{1}+\theta_{2}\right)}{2}
$$

does not equal

However, the resulting error will be small as long as the station points are judiciously selected to maintain small nearly equal angle changes. Should more accurate angles be necessary the programmer could utilize trigonometric identities and equal angle changes.

An additional problem in this sub-routine was to insure that the centerline values of angles on deck and bottom represented 0° and 180° respectively. As was mentioned earlier the \sin and \cos of 135° were placed at the corner station.

Instruction		Input to MRA	In MRA	$\begin{aligned} & \text { Transfer } \\ & \text { from } M R A \end{aligned}$
g3,	ita g3+20	(See glossary of terms).		
icr pb2				
ica	$a \mathrm{l}+2+\mathrm{c}$	$+\sin \theta_{1}$	$+\sin \theta_{1}$	
iad	$a l+4+c$	$+\sin \theta_{2}$	$+\sin \theta_{1}$	
imr	cl	$\times 0.5$	$\sin \theta_{1}$	$\frac{2}{2}=\sin \phi$
its	$a \mathrm{l}+2+\mathrm{c}$			$\sin \varnothing$
ica	$a 2+2+c$	$+\cos \theta_{1}$	$+\cos \theta_{1}$	
iad	a $2+4+c$	$+\cos \theta_{2}$	$\cos \theta_{4}$	

Instruction	Input to MRA (continued)	Transfer from MRA
imp cl	0.5	$\frac{\cos \theta_{1}+\cos \theta_{2}}{2}=\cos \phi$
its $\mathrm{a} 2+2+\mathrm{c}$		$\cos \phi$

	The following orders sets 0° and 180° in the center line deck and keel and, also sets 135° in the corner angle.			
ica	c6	+0.0	+0.0	
its	al			+0.0
its	$\mathrm{al}+\mathrm{pbl}+\mathrm{pbl}$			+0.0
ics	c3	+1.0	+1.0	
its	a2			+1.0
ica	c3	-1.0	-1.0	
its	$\mathrm{a} 2+\mathrm{pbl}+\mathrm{pbl}$			-1.0
ica	c16	+0.707	+0.707	
its	$\mathrm{al}+\mathrm{pb} 3+\mathrm{pb} 3$			+0.707
ics	c16	-0.707	-0.707	
its	$\mathrm{a} 2+\mathrm{pb} 3+\mathrm{pb} 3$			-0.707

isp

Since web frames are built up sections it is necessary to compute the moment of inertia at each station around the girth. The width of shell plating assumed to be effective in forming the web beam is thirty times the plate thickness.

The following sub-routine uses the relationships below in forming the area, moment of inertia and distance to the neutral axis of the web from the shell.

$$
\begin{array}{lll}
A_{f}=W_{f} t_{f} & m_{f}=\left(d_{W}+\frac{t_{f}}{2}\right) A_{f} & I_{f}=\left(d_{W}+\frac{t_{f}}{2}\right)_{f} \\
A_{W}=d_{W} t_{W} & m_{W}=\frac{d_{W}}{2} A_{W} & I_{W}=\frac{d_{W}}{1.5} m_{W}=\frac{t_{W} d_{W}}{3} \\
A_{s}=30 t_{s}^{2} & m_{s}=\frac{t_{s}}{2} A_{S} & I_{s}=\frac{t_{s}}{1.5} m_{s} \\
A_{t}=A_{f}+A_{W}+A_{s} & m_{t}=m_{f}+m_{W}+m_{s} & I_{t}=I_{f}+I_{W}+I_{s} \\
d_{N A}=\frac{m_{t}}{A_{t}} \quad & I_{N A}=I_{t}-A_{t} d_{N A}^{2}
\end{array}
$$

Instruction		Input to MRA	In MRA	$\begin{aligned} & \text { Transfer } \\ & \text { from MRA } \end{aligned}$
		(continued)		
imr	b $5+\mathrm{c}$	$x t_{s}$	$A_{s} \times t_{s}$	
imr	cl	$x .5$	$\frac{A_{s} t_{s}}{2}=m_{s}$	
its	t6			m_{s}
ica	t2	$+\mathrm{m}_{\mathrm{w}}$	m_{W}	
iad	t4	$+m_{f}$	$\mathrm{m}_{\mathrm{W}}+\mathrm{m}_{\mathrm{f}}$	
isu	t6	$-m_{s}$	$m_{W}+m_{f}-m_{s}=M_{t}$	
its	t7			M_{t}
ica	tI	$+\mathrm{A}_{\mathrm{W}}$	$+A_{W}$	
iad	t3	$+_{\text {f }}$	$A_{W}+A_{\text {f }}$	
iad	t5	$+A_{s}$	$A_{S}+A_{W}+A_{f}=A_{t}$	
its	d2+c			A_{t}
ica	t7	$+{ }_{\text {+ }}$	$+\mathrm{M}_{t}$	
idv	d2+c	$\div \mathrm{A}$	$\frac{M_{t}}{A_{t}}=d_{N_{0} A_{0}}$	
its	$\mathrm{dI}+\mathrm{c}$			$\mathrm{d}_{\mathrm{N}, ~}$.
g5	ica t2	$+\mathrm{m}_{\mathrm{W}}$	$+\mathrm{m}_{\text {W }}$	
imr	blac	$x d_{W}$	$m_{W} d_{W}=\frac{A_{W} d_{W}^{2}}{2}$	
idv	c4	1.5	$\frac{A_{W} d_{W}^{2}}{3}=I_{W}$	
its	tI			$I_{\text {W }}$

When working with beams, all forces and moments are considered to act along the neutral axis. To make the program more general, the original coordinate inputs were the x and y coordinates of the inner surface of hull shell. The coordinates of the neutral axis may be formed by offsets from the shell coordinates. The reader will notice that such a program allows alteration of the web section as desired to produce the practical results. The offset distance is $d_{N_{0}} A_{\text {。 }}$

$$
\begin{aligned}
& x_{N_{0} A_{\bullet}}=x_{S}-d_{N_{0} A_{\bullet}} \sin \phi, \\
& y_{N_{\cdot} A_{\bullet}}=y_{S}+d_{N_{\bullet} A_{\bullet}} \cos \phi_{0}
\end{aligned}
$$

The following program forms the coordinates of the neutral axis. Since this program is a continuation of the above subroutine, the counter instructions are still in effect.

Instruction $\quad \frac{\text { Input to MRA }}{\frac{\text { Transfer }}{\text { from MRA }}}$
(continued)
$\operatorname{imr} \quad a]+c$
$x \sin \phi_{\operatorname{shelI}}$

$$
-\frac{d_{N_{0} A_{0}} \sin \varnothing}{12}
$$

ind x l oc
$+x_{\text {shell }}$
$x_{S}-\frac{d_{N_{0} A_{0}} \sin \phi}{12}=x_{N_{0}} A$.
its $x]+c$
iss tI
$-\left(-\mathrm{d}_{\mathrm{N}_{0} A_{0}} / \mathrm{I2} \quad+\mathrm{d}_{\mathrm{N}_{0} A_{0}} / 12\right.$
$\operatorname{imr} \mathrm{a} 2+\mathrm{c}$
$x \cos \phi_{\text {she lI }}$
$\frac{\mathrm{d}_{\mathrm{N}_{0}} \mathrm{~A}_{0}}{\mathrm{I2}} \cos \phi$
ind $y>+c$
$y_{\text {shell }} \quad y_{S}+\frac{d_{N_{0}} A_{0}}{12} \cos \phi=y_{N_{0} A_{0}}$
its yl+c

$$
\Psi_{N_{\bullet}} A_{\bullet}
$$

jct gl
isp

The moments at each station are formed by multiplying the summation of the horizontal and vertical components of the loads by the vertical and horizontal projections of the segment.

$$
-\sum_{n-1}\left(x_{n}-x_{n-1}\right)-\sum H_{n-1}\left(y_{n}-y_{n-1}\right)+m_{n}=0
$$

The following sub-routine forms the moments at each station due to the weight and water pressure loads on the starboard side. Note that the first few instructions put +0.0 into t1, t2, t3. This was necessary due to their use in forming the summations。 In addition then using this sub-routine to form m_{n}, th and b3 must be set to zero. When using this to compute the bending moment after solving for the redundant, the value of the redundant m_{0} must be put into th and m_{0} / I_{0} in $b 3$.

Instruction		Input to MRA	In PRA	$\begin{aligned} & \text { Transfer } \\ & \text { from } \operatorname{lRA} \end{aligned}$
		(continued)		
its	t3			$\left(m_{n}\right)$
ica	e3+c	+ H_{W}	$+\mathrm{H}_{\mathrm{W}}$	
iad	t2	$\sum^{n-2} H_{w}$	$\sum^{n-1} H_{w}$	
its	t2			$\sum_{\omega}^{n-1} H_{v}$
ics	$y+2+c$	$\left(-y_{N, A}\right)^{+1}$	$\left(-y^{N} . A\right.$	
iad	$y l+c$	$\left(+y_{N, A_{0}}\right)_{n-1}$	$-\left[\left(\mathrm{y}_{\mathrm{N}}\right.\right.$	$\left(y_{N_{0}} A_{0}\right)_{n-1}$
imr	t2	$x \sum^{n-1} H_{w}$	$\Delta_{y} \sum^{n-1}$	
iad	t3	$\left(m_{n}\right)_{n-1}$	$\left(m_{n}\right)_{n}$	
iad	t4	$\sum^{n-1}\left(m_{n}\right)$	$\left(m_{n}\right)$	
its	t4			$\left(m_{n}\right)$
imr	$d 3+2+c$	$\times I / I$	m_{n} / I	
its	b $3+2+c$			$\mathrm{m}_{\mathrm{n}} / \mathrm{I}$
ict	g7+8			

The following section of the sub-routine forms moments port side. Remember that the coordinates of neutral axis and the horizontal loads are stored for one side. The sub-routine must move up the stored colurm of numbers to form the moments.

Instruction	Input to MRA	In MRA	$\begin{aligned} & \frac{\text { Transfer }}{\text { from MRA }} \end{aligned}$
(continued)			
su c7	$-\left(+2 W_{\text {Wo }} W_{0}\right)$	ica e3+	1-2
ts g8+7	ica e3+pbl+pbl-2		
ca $98+10$	ica $y 1+p b 2+p b 2$	ica $\mathrm{yl}+\mathrm{p}$	
td g8+11	(Instruction in g^{8+11}	now isu	+pb2)
su c7	-(+2 W.W.)	ica $\mathrm{y} 7+\mathrm{p}$	
ts g8+10	ica $\mathrm{y} 7+\mathrm{pb} 2+\mathrm{pb} 2-2$		
ca $98+15$	+imr $\mathrm{d} 3+\mathrm{pbl}+\mathrm{pbl}$	+imr d3+	
su c7	-(+2 W.W.)	+imr d3	1-2
ts g8+15			$i m r ~ d 3+p b l+p b l-2 ~$

IN

ict g8
isp

Since all moments due to applied loads and forces had been formed, it was possible to perform the integrations of moments to obtain the slopes and deflections previously discussed in the procedure. At this point in the programming the redundants m_{0}, p_{0}, and q_{0} must be considered. m_{0} will appear as a constant value of moment at each station throughout the girth. The moments due to p_{0} and q_{0} depend upon the value of y and x at each station. Since the web frame was assumed to

$$
m_{\text {redundant }}=p_{0} y_{n}+q_{0} x_{n}+m_{0}
$$

be symmetrical; the slope changes and deflections around the entire girth caused by the redundant will be double the slopes and deflections on one side . Fo: convenience in integration, the redundant will be integrated around the starboard side.

The method of integration used was the trapezoidal rule which implies linear slope of the moment curve between stations on the moment curve. The area under the curve

$$
\begin{aligned}
& =\sum_{n=I}^{7}\left[\left(\frac{M}{I}\right)_{n}+\left(\frac{M}{I}\right)_{n+I}\right] \frac{d s_{n}}{2} \\
A & =\left[\left(\frac{M}{I}\right)_{1}+\left(\frac{M}{I}\right)_{2} \frac{d s}{2}+\left(\frac{M}{I}\right)_{2}+\left(\frac{M}{I}\right)_{3}\right] \frac{d s_{2}}{2}+\ldots
\end{aligned}
$$

As can be seen from the figure, the trapezoidal rule will cause small error providing the curve is smooth and stations are closely spaced. Despite the small error, the above method of integration was chosen because it is readily applicable to computer programming and because random station spacing was necessary to approximate a curved figure by a series of straight lines

In the process of "debugging" the program several improvenents in the sequence of operations for the formation of the integrals were made. The results of these improvements and errors in addresses of the initial program for the integration procedures alters the procedure as written. The techniques used and explained in the following pages are correct.

The major improvement was the inclusion oi the integration routines under one sub-routine. All the integrals for m_{0}, p_{0}, q_{0} and m_{n} / I were performed under one eycle counter. Each of the stanchion redundant forces R and S were under a separate cycle. The routine

$$
p_{0} \int \frac{y}{I} \mathrm{~d} s
$$

was not performed. To obtain the coefficient of p_{0} s the coefficient of m_{0} which is

$$
\int_{\mathrm{I}}^{\mathrm{y}} \mathrm{ds}
$$

was used. The group of instructions included under flad g9 were added to insure that zeros were initially placed in the registers that were to hold the matrix. Also, the addresses for forming the port side integrals vere 1 Iound to be in error by two registers.

The instructions listed below are correct and replace the integration routines listed under flads gll throuoh g22 of the detailed description. Unfortunately, these alterations were not made in sufficient time to allow the correction of the detailed cxplanation. These instructions should be read from left to right.
g9，ita g22
ict g2＋2
imr a5＋c
imr xlec
imr xl $+2+c$
iad $\mathrm{dI}+24$
its $七$ 化
iad 仜
g14，ica t （
imr $y l+2+c$
its d$]+12$
imr cl
imr b3＋c
iad t3
its d I +52
ica $\mathrm{xl}+2+\mathrm{c}$
imr cl
iad b3＋pal＋pal＋c
its dl＋50
icayl＋pb2＋pb2
imr cl
imrb3＋pbl＋pbl＋c
iad tI
its $\mathrm{d}+54$
ts $\mathrm{gl} 8+2$
ts g19
ts $\mathrm{g} 19+10$
ict gll
icaxl＋pbl＋c
imr cl
its $d 1+56$
imra5 $+\mathrm{pb} 4+\mathrm{c}$
iad dI＋56
its tI

icr 30	ica c6	its $\mathrm{dl}+\mathrm{c}$
icr pbl	g11，ica d $3+\mathrm{c}$	iad d $3+2+c$
iad dl	its dl	gl2，icaxl＋c
imr d3＋c	its tl	ica $x]+2+c$
imr d3＋2＋c	iad tl	imr astc
its dl +24	gl3，ica y l $+c$	imr d3＋c
ica $\mathrm{yl}+2+\mathrm{c}$	imr d3＋2＋c	its t2
imr $a 5+c$	iad dl＋2	its dl＋2
imr yl＋c	its tl	ica t2
iad tI	imr a $5+\mathrm{c}$	iad dl＋12
g15，ica b3＋c	iad b3＋2＋c	imr a5＋c
iad dl＋50	its $\mathrm{dl}+50$	g16，ica $y 7+c$
its t3	ica $\mathrm{yl}+2+\mathrm{c}$	imr b3＋2＋c
imr a5＋c	imr cl	iad $\mathrm{dl}+52$
gl7，ica $\mathrm{xl}+\mathrm{c}$	imr b3＋c	its t3
imr b $3+2+c$	iad t3	imr a5＋c
iad $21+54$	its d7＋54	gI8，icab $3+\mathrm{pbI}+\mathrm{pbl}+\mathrm{c}$
$\mathrm{imr} \mathrm{a} 5+\mathrm{pb} 2+\mathrm{pb} 2$	imr cl	iad $\mathrm{d} 7+50$
gl9，icayl＋pbl＋p	limrb3＋pbl + pbl + c	its ty
imrb3＋pal＋pal＋c	iad tI	imra5 + pb2 + pb2
iad dl＋52	its $\mathrm{dl}+52$	icsxI $+\mathrm{pbI}+\mathrm{pbl}$
its tl	icsxl＋pb2＋pb2	immb $+\mathrm{paI}+\mathrm{paI}+\mathrm{c}$
imra $5+\mathrm{pb} 2+\mathrm{pb} 2$	imr cl	iad dl＋54
OUT	ca gl $8+2$	su c7
ts g19＋6	ts g19＋16	ca $\mathrm{gl} 9+3$
su c7	ts $\mathrm{gl} 9+3$	ca $\mathrm{gl} 19+13$
su．c7	t s g $19+13$	IN
ica $\partial \mathbf{l}+2$	its d ］+10	g20，icr pa5
isu x ＋ pb 4	its t3	imara $5+\mathrm{pb} 4+\mathrm{c}$
its tI	imrb $3+\mathrm{pb} 4+\mathrm{c}$	iad dI +56
icaxl + pbl $4+2+\mathrm{c}$	isux］＋pb4	its t_{4}
imr cl	its t2	imrb $3+\mathrm{pb} 4+2+\mathrm{c}$
its $\mathrm{d} 7+56$	ica tl	imrd3＋pbl + c
imryl + pbl +c	iad d7＋I6	its dl＋16

ica t2
iad dl+16
iad dl+26
iad dl+26
iad dl+36
iad $\mathrm{dl}+36$
iad dl+6
its $\mathrm{dl}+30$
its $\mathrm{d} \mathbf{l}+34$
its t3
imrb $3+p b 6+p b 6$
isuxl + pb5
its t2
OUT
ts $\mathrm{g} 21+16$
its tl
ica t2
iad $d 7+18$
iad d工+28
iad $d 1+28$
iad d1+48
iad dle48
iad $\mathrm{dl}+8$
its $\mathrm{dl}+40$
its $\mathrm{dl}+44$

imrd3+pbl $+2+\mathrm{c}$	its t2	imryl + pbl $+2+\mathrm{c}$
its $\mathrm{dl}+16$	ica tl	immal $\mathrm{pb}^{\text {b }}+\mathrm{c}$
its $\mathrm{dl}+26$	ica t2	imrul + b $4+2+c$
its dl+26	ica t3	imr tI
its $\mathrm{dl}+36$	ica l_{4}	imr t2
its dl+36	ica th	jad t2
its dl +6	ict g20+1	ica dl+6
ica $\mathrm{dl}+\mathrm{l} 6$	its d]+32	ica $\mathrm{dl}+26$
g21, jer pa6	icaxl + pb5 $5+\mathrm{c}$	isuxl +pb 5
imra5+pb5+c	imr cl	its tl
iad dl+58	its dl +58	icax $7+\mathrm{pb} 5+2+\mathrm{c}$
its t4	imra5 + pb5 5 c	imr cl
imrb $3+\mathrm{pb} 6+\mathrm{pb} 6-2$	iad d工+58	its dl+58
ca $\mathrm{g} 21+16$	ts g2l+7	su c?
IN	icatl	imrd3+pb5 +c
imryl + pb5 +c	iad $\mathrm{dl}+18$	its $\mathrm{dl}+18$
imrd3+pb5 $+2+\mathrm{c}$	its t2	imryl $+\mathrm{pb} 5+2+\mathrm{c}$
its $\mathrm{dz}+18$	ics tl	immxI $+\mathrm{pb5}+\mathrm{c}$
its dl+28	ics t2	imrxl $+\mathrm{pb} 5+2+\mathrm{c}$
its d]+28	ica t3	imr tl
its dl+48	ica 4	imr t2
its $\mathrm{dz}+48$	jca tl	iad t2
its $\mathrm{dl}+8$	ict g21+1	ica dl +8
ica dl +18	itx d7+42	ica $\mathrm{dl}+28$
g22, isp0		

The results of each integration are stored to form the matrix as shown by Fig. VI. The following sub-routine performs the integration of the change of slope around the girth of the web frame due to redundant moment m_{0}.

$$
\Delta \theta=\int_{0}^{0} \frac{m_{0}}{I} d s=2 \int_{0}^{A} \frac{m_{0}}{I} d s=2 m_{0} \int_{0}^{A}\left(\frac{I}{I_{n}}+\frac{I}{I_{n+1}}\right) \frac{d s_{n}}{2}=m_{0} \int_{0}^{A}\left(\frac{I}{I_{n}}+\frac{I}{I_{n+1}}\right) d s_{n}
$$

Instruction Input to MRA In MRA $\quad \frac{\text { Transfer }}{\text { from MRA }}$
gll, ita $g 15+9$ (See glossary of instructions).
icr pbl (Sets cycle counter equal to the number of stations on a side minus 1).
ica $d 3+c$
$+I / I_{n-I}$
$+I / I_{n-I}$
iad $d 3+2+c$
$+I / I_{n}$
$+I / I_{n}+I / I_{n-I}$
imr a5+c
$x d s_{n}$
$\left(I / I_{n}+I / I_{n-I}\right) d s_{n}$
iad
01

$$
+\sum^{n-1}\left(I / I_{n}+I / I_{n-1}\right) d s_{n-1} \sum^{n}\left(I / I_{n}+I / I_{n-1}\right) d s_{n}
$$

its dI

$$
\sum^{n}\left(I / I_{n}+I / I_{n-1}\right) d s_{n}
$$

The instructions below find the deflection in the y-direction due to the moment caused by the shear redundant ${ }^{q}{ }_{0}$.

$$
\Delta y=\int_{0}^{0} x\left(q_{0} x\right) d s=2 \int_{0}^{A} x\left(q_{0} x\right) d s=2 q_{0} \sum_{I}^{n-1}\left[\frac{\left(x_{n-1}\right)^{2}}{I_{n-I}}+\frac{\left(x_{n}\right)^{2}}{I_{n}}\right] \frac{d s}{2}
$$

g12,	ica $\mathrm{xl}+\mathrm{c}$	$+{ }_{\text {n }}{ }^{\text {-1 }}$	$+x_{n-1}$
imr	xl+c	$\times{ }^{\text {n }}$-1	$\left(x_{n-1}\right)^{2}$
imr	d3+c	$\times 1 / I_{n-1}$	$\left(x_{n-1}\right)^{2} / I_{n-1}$
its	tI		$\left(x_{n-1}\right)^{2} / I_{n-1}$
ica	$x \mathrm{l}+2+\mathrm{c}$	$+\mathrm{x}_{\mathrm{n}}$	x_{n}
imr	$\mathrm{xl}+2+\mathrm{c}$	$\times \mathrm{x}_{\mathrm{n}}$	x_{n}^{2}
imr	d3+2+c	$\times 1 / I_{n}$	$\left(x_{n}\right)^{2} / I_{n}$
iad	tI	$+\left(\mathrm{x}_{\mathrm{n}-1}\right)^{2} / I_{\mathrm{n}-1}$	$\left(x_{n}\right)^{2} / I_{n}+\left(x_{n-1}\right)^{2} / I_{n-1}$
imr	a5+c	$x \mathrm{ds}_{\mathrm{n}}$	$\left(x_{n}\right)^{2} / I_{n}+\left(x_{n-1}\right)^{2} / I_{n-1} d s_{n}$
iad	d7 +24	$\sum^{n-1} d s_{n-1}\left(x_{n} / I\right.$	$\left(x_{n-1}\right)^{2} / I_{n-1} \sum^{n}\left(x_{n}\right)^{2} / I_{n}+(x$

its \quad d +24

$$
\sum^{n}\left(x_{n}\right)^{2} / I_{n}+\left(x_{n-1}\right)^{2} / I_{n-1} d s_{n}
$$

The deflection in the x-direction due to m_{0} was found by performing the integration

$$
\Delta x=\int_{0}^{0} y \frac{m_{0}}{I} d s=2 \int_{0}^{A} y \frac{m_{0}}{I} d s=2 m_{0} \sum_{1}^{n-1}\left[\left(y_{n-1} / I_{n-1}\right)+\left(y_{n} / I_{n}\right)\right] \frac{d s_{n}}{2} .
$$

The instructions starting with gl3, perform this integration.

Transfer
from MRA
gl3, ica yl+c
$+y_{n-1}$
$+y_{n-1}$
imr d3+c
$\times I / I_{n-I}$
y_{n-1} / I_{n-1}
its tl
y_{n-1} / I_{n-1}
ica $y l+2+c$
$+y_{n}$
$+y_{n}$
imr $d 3+2+c$
$\times I / I_{n}$
y_{n} / I_{n}
iad tl
$+y_{n-1} / I_{n-1}$
$\left(y_{n} / I_{n}+y_{n-1} / I_{n-1}\right)$
imr $a 5+c$
$\nless \mathrm{ds}{ }_{n}$
$\left(y_{n} / I_{n}+y_{n-I} / I_{n-I}\right) d s_{n}$
iad $\mathrm{d} \boldsymbol{l}+2$

$$
+\sum_{1}^{n-1}\left(y_{n} / I_{n}+y_{n-1} / I_{n-1}\right) d s_{n-1} \sum_{1}^{n}\left(y_{n} / I_{n}+y_{n-1} / y_{n-1}\right) d s_{n}
$$

its $\mathrm{dl}+2$

$$
\sum_{1}^{n}\left(y_{n} / I_{n}+y_{n-I} / I_{n-1}\right)
$$

The following section of the sub-routine performs the integration of the moment due to $p_{0}=p_{0} y$ around the girth.

$$
\left.\Delta \theta=\int_{0}^{0} \frac{p_{0} y}{I} d s=2 p_{0} \int_{0}^{A} \frac{y}{I} d s=2 p_{0}\right\rangle\left(\frac{y_{n}}{I_{n}}+\frac{y_{n+1}}{I_{n+1}}\right)_{2}^{d s_{n}}
$$

$\underline{\text { Instruction } \quad \text { Input to MRA In MRA } \quad \text { Transfer }}$ from MRA

gII, ica $y l+c$	$+y_{n-1}$	$+y_{n-I}$
$\operatorname{imr} d 3+c$	$\times I / I_{n-1}$	y_{n-I} / I_{n-I}

its ty

$$
y_{n-1} / I_{n-I}
$$

ica $y l+2+c$
$+y_{n}$
$+y_{n}$
imr $\quad d 3+2+c$
$\times I / I_{n}$
y_{n} / I_{n}
its t2

$$
\mathrm{y}_{\mathrm{n}} / \mathrm{I}_{\mathrm{n}}
$$

iad tl

$$
+y_{n-1} / I_{n-1}
$$

$$
y_{n} / I_{n}+y_{n-1} / I_{n-1}
$$

imr a5+c
$x d s_{n}$
$\left(y_{n} / I_{n}+y_{n-1} / I_{n-1}\right) d s_{n}$
iad dl+10

$$
\sum^{n-1}\left(y_{n-1} / I_{n-1}+y_{n-2} / I_{n-2}\right) d s_{n-1} \sum^{n}\left(y_{n} / I_{n}+y_{n-1} / I_{n-1}\right) d s_{n}
$$

its $\mathrm{dl}+10$

$$
\sum^{n}\left(y_{n} / I_{n}+y_{n-1} / I_{n-1}\right) d s_{n}
$$

The x-deflection due to the axial redundant force p_{0} was

$$
\int_{0}^{0} \frac{p_{0} y^{2}}{I} d s=2 p_{0} \int_{0}^{A} \frac{y^{2}}{I} d s=2 p_{0} \sum_{I}^{n-I}\left[\frac{y_{n}^{2}}{I}+\frac{\left(y_{n-1}\right)^{2}}{I_{n-1}}\right]{ }_{2}^{d s_{n}}
$$

The instructions given in g15, performs the p_{0} moment x-deflection. Note that the values of y_{n-1} / I_{n-I} and y_{n} / I_{n} formed in $g I 4$, and stored in temporary registers is used in g15, thus saving operations。
-
g15, inca tI
imp $y l+c$
$+y_{n-1} / I_{n-1}$
$+y_{n-1} / I_{n-1}$
$x^{y} n-1$
$\left(y_{n-1}\right)^{2} / I_{n-1}$
its tI

$$
\left(y_{n-1}\right)^{2} / I_{n-1}
$$

inca th

$$
+y_{n} / I_{n}
$$

$$
+y_{n} / I_{n}
$$

$$
\times \mathrm{J}_{\mathrm{n}}
$$

$$
y_{n}^{2} / I_{n}
$$

ice tl

$$
+y_{n-1}^{2} / I_{n-1}
$$

$$
y_{n}^{2} / I_{n}+y_{n-1}^{2} / I_{n-I}
$$

imp afc
$x d s_{n}$
$\left(y_{n}^{2} / I_{n}+y_{n-I}^{2} / I_{n-I}\right) d s_{n}$
lad dl+12
$+\sum_{1}^{n-1}\left(y_{n}^{2} / I_{n}+y_{n-1}^{2} / I_{n-1}\right) d s_{n} \sum_{1}^{n}\left(y_{n}^{2} / I_{n}+y_{n-1}^{2} / I_{n-1}\right) d s_{n}$
its $\mathrm{d} I+12$

$$
\sum_{1}^{n}\left(y_{n}^{2} / I_{n}+y_{n-1}^{2} / I_{n-1}\right) d s_{n}
$$

jct gll+2
(Cycles back to gll+2).
isp
(Address set by ita instruction at gl).

Due to symmetry of the web frame structure, the following redunant integrals are zero. Changes in slope due to $\mathrm{a}_{0}{ }^{\circ}$
$\Delta \theta=\int_{0}^{0^{\prime}} \frac{q_{0}}{I} d s=\int_{0}^{A}(+x) \frac{q_{0}}{I} d s+\int_{A}^{0^{\prime}}(+x) \frac{q_{0}}{I} d s=q_{0} \int_{0}^{A} \frac{x}{I} d s+\int_{A}^{0^{\prime}} \frac{(-x)}{I} d s=0$

Vertical deflection due to m_{0} and p_{0}.

$$
\begin{aligned}
& \Delta y=\int_{0}^{Q^{\prime}} \frac{m_{0}}{I} d s=m_{0} \int_{0}^{A} \frac{x}{I} d s+\int_{A}^{0^{\prime}} \frac{(-x)}{I} d s=m_{0} \int_{0}^{A} \frac{x}{I} d s+\int_{A}^{0^{\prime}} \frac{(-x)}{I} d s=0 \\
& \Delta y=\int_{0}^{0^{\prime}} \frac{\left(p_{0} y\right)}{I} d s=p_{0} \int_{0}^{A} \frac{x y}{I} d s+\int_{A}^{0^{:}}(-x) \frac{y}{I} d s=p_{0} 0 .
\end{aligned}
$$

Horizontal deflection due to q_{0}.

$$
\Delta x=\int_{0}^{0^{\prime} y\left(q_{0} x\right)} \frac{I}{I} d s=q_{0} \int_{0}^{A} \frac{x y}{I} d s+\int_{A}^{0^{\prime}}(-x)_{I}^{J} d s=q_{0} 0
$$

The sub-routines below perform the integration of moments caused by water pressure and weight loads. Note that two programs are necessary since 49 stations are used in the integration but only 25 x and y coordinates had been stored. The following program performs the integration of the moments along the starboard side to find the change in slope for one-haif the web.

$$
\Delta \theta=\int_{0}^{A} \frac{m_{n}}{I} d s=\sum_{1}^{24}\left(\frac{m_{n}}{I_{n}}+\frac{m_{n-1}}{I_{n-1}}\right)_{2}^{d s}
$$

The segment of the sub-routine that follows forms the integration of $y m_{n} / I$ to give the deflections in the x-direction around the starboard half of the web.

$\underline{I r_{1}}$ MRA
transfer from PRA
(continued)
imp cl

$$
\times 1 / 2
$$

$$
\left(y_{n} m_{n} / I_{n}+y_{n-1} m_{n-1} / I_{n-1}\right) d s_{n} / 2
$$

ied $d I+52+\sum_{1}^{n-1}\left(y_{n} m_{n} / I_{n}+y_{n-1} m_{n-1} / I_{n-1}\right) d s_{n} / 2$

$$
\sum_{1}^{n}\left(y_{n} m_{n} / I_{n}+y_{n-1} m_{n-1} / I_{n-1}\right) d s_{n} / 2
$$

its $\mathrm{d}+\mathrm{F} 2$

$$
\sum_{1}^{n}\left(y_{n} m_{n} / I_{n}+y_{n-1} m_{n-1} / I_{n-I}\right) d s_{n}
$$

To obtain the deflections in the J -direction on the starboard side due to applied loads, the integral of $x m_{n} / I$ was formed.

$$
\Delta y=\int_{0}^{A} \frac{x m_{n}}{I} d s=\sum_{I}^{n}\left(\frac{n_{n-I}^{x}{ }_{n-1}}{I_{n-1}}+\frac{m_{n} x_{n}}{I_{n}}\right) \frac{d s_{n}}{2}
$$

Instruction Input to MRA In MRA

Transfer from MRA
gl, ic $x 1+c$

$$
+x_{n-1}
$$

$$
+x_{n-1}
$$

$\operatorname{imr} \quad \mathrm{b} 3+\mathrm{c}$
$x m_{n-1} / I_{n-1}$
$x_{n-1} m_{n-1} / I_{n-1}$
its ts

$$
x_{n-1}^{m_{n-1}} / I_{n-I}
$$

ice $x]+2+c$

$$
+\mathrm{x}_{\mathrm{n}} \quad+\mathrm{x}_{\mathrm{n}}
$$

imper b3+2+c

$$
\times m_{n} / I_{m}
$$

$$
x_{n} m_{n} / I_{n}
$$

ied th

$$
+x_{n-1}^{m_{n-1}} / I_{n-1} \quad\left(x_{n-1} m_{n-1} / I_{n-I}+x_{n} m_{n} / I_{n}\right)
$$

Transfer from MRA
(continued)

imr a5+c	$x d s_{n}$	$\left(x_{n-1} m_{n-I} / I_{n-1}+x_{n} m_{n} / I_{n}\right) d s_{n}$
imr cl	$x I / 2$	$\left(x_{n-1} m_{n-I} / I_{n-1}+x_{n} m_{n} / I_{n}\right) d s_{n} / 2$

iad $21+54+\sum_{1}^{n-I}\left(x_{n-1} m_{n-I} / I_{n-1}+x_{n} m_{n} / I_{n}\right) d s_{n} / 2$
its $\mathrm{dl}+54$

$$
\sum_{1}^{n}\left(x_{n-1}^{m} n_{n-1} / I_{n-1}+x_{n} m_{n} / I_{n}\right) d s_{n} / 2
$$

$$
\sum_{1}^{n}\left(x_{n-1} m_{n-1} / I_{n-1}+x_{n} m_{n} / I_{n}\right) d s_{n} / 2
$$

ict $\mathrm{gl6+2}$ (Cycles back to $\mathrm{gl} 6+2$).

To perform the integrations on the port side, the address changes if the x coordinates, y coordinates and girth segments ds must move up a column of registers. This is accomplished by subtracting 2 from the address for each cycle performed.

> Formation of the change in slope due to applied loads (port side)

$$
\Delta \theta=\int_{A}^{0} \frac{m}{I} d s=\sum_{25}^{n}\left(\frac{m_{n}}{I_{n}}+\frac{m_{n-1}}{I_{n-1}}\right) \frac{d s_{n}}{2}
$$

icr pbl (Sets cycle counter to nurnber of points in a side)
g19, ica b3 + pal $+p a l+c+m_{n-1} / I_{n-1}$
m_{n-1} / I_{n-1}
iad $b 3+2+p a l+p a l+c \quad+m_{n} / I_{n}$
$\left(m_{n} / I_{n}+m_{n-I} / I_{n-1}\right)$
$i m r a 5+p b l+p b l$
$x \mathrm{ds}_{\mathrm{n}}$
$\left(m_{n} / I_{n}+m_{n-1} / I_{n-1}\right) d s_{n}$
imr cl
$x 1 / 2$
$\left(m_{n} / I_{n}+m_{n-1} / I_{n-1}\right) d s_{n} / 2$
iad $d 3+50 \quad+\sum_{1}^{25+n-1}\left(m_{n} / I_{n}+m_{n-1} / I_{n-1}\right) d s_{n} / 2 \sum_{1}^{25+n}\left(r_{n} / I_{n}+m_{n-1} / I_{n-1}\right) d s_{n} / 2$.
its d3+50

$$
\sum_{1}^{25+n}\left(m_{n} / I_{n}+m_{n-1} / I_{n-1}\right) d s_{n} / 2
$$

Formation of horizontal deflection port side

$$
\Delta x=\int_{A}^{0} \frac{m_{n}^{y}}{I} d s=\sum_{25}^{25+n}\left(\frac{m_{n-1} y n-1}{I_{n-1}}+\frac{m_{n} y n}{I_{n}}\right) \frac{d s_{n}}{2}
$$

Instruction

Input to MRA

In MRA
Transfer
from MRA
g20, ica $y l+p b l+p b l$
$y_{n-1} \quad y_{n-1}$
imr b3+pal+pal+c
$\times m_{n-I} / I_{n-I}$
$Y_{n-1} m_{n-I} / I_{n-1}$
its t1

$$
y_{n-1} m_{n-1} / I_{n-1}
$$

ica $y l+p b l+p b l-2$
$+{ }_{\mathrm{y}}^{\mathrm{n}}$
$+y_{n}$

Instruction

> Input to MRA

In MRA
$\frac{\text { Transfor }}{\text { from MRA }}$
(continued)
imr $\quad \mathrm{b} 3+\mathrm{pal}+\mathrm{pal}+2+\mathrm{c} \quad \mathrm{Xm}_{\mathrm{n}} / \mathrm{I}_{\mathrm{n}}$
$y_{n} m_{n} / I_{n}$
iad tl
$+m_{n-1} I_{n-1} / I_{n-I}$
$X_{n} m_{n} / I_{n}+y_{n-1} m_{n-I} / I_{n-I}$
$\mathrm{imr} \quad \mathrm{a} 5+\mathrm{pbl}+\mathrm{pbl}$
$x d s_{n}$
$\left(y_{n} m_{n} / I_{n}+y_{n-1} m_{n-1} / I_{n-1}\right) d s_{n}$
imr cl
$x I / 2$
$\left(y_{n} m_{n} / I_{n}+y_{n-1} m_{n-I} / I_{n-I}\right) d s_{n} / 2$
iad $\quad d>+52$

$$
\sum_{1}^{25+n-1}\left(y_{n} m_{n} / I_{n}+y_{n-1} m_{n-1} / I_{n-1}\right) d s_{n} / 2
$$

$$
\sum_{I}^{25+n}\left(y_{n} m_{n} / I_{n}+y_{n-1} m_{n-1} / I_{n-1}\right) d s_{n} / 2
$$

its $\mathrm{d}+52$

Formation of vertical deflection port side due to applied Ioads.

$$
\Delta y=\int_{A}^{0} \frac{x m_{n}}{I} d s=\sum_{I}^{25+n}\left(\frac{m_{n-1} x_{n-1}}{I_{n-1}}+\frac{m_{n} y_{n}}{I_{n}}\right) \frac{d s_{n}}{2}
$$

Instruction Input to MRA In MRA

Transfer from MRA
ica $x l+p b l+p b l$

$$
+x_{n-1}
$$

$$
+x_{n-1}
$$

$i m r \quad b 3+p b l+p b l+c$
$+m_{n-1} / I_{n-1}$ $x_{n-1} m_{n-1} / I_{n-1}$
its tl

$$
x_{n-1} m_{n-1} / I_{n-1}
$$

(continued)

ica	$x \mathrm{l}+\mathrm{pbl}+\mathrm{pbl}-2$	$+\mathrm{x}_{\mathrm{n}}$	$+\mathrm{X}_{\mathrm{n}}$
imr	b3+pal + pal $+2+c$	$x m_{n} / I_{n}$	$x_{n} m_{n} / I_{n}$
iad	tl	$+x_{n-1}{ }^{m}{ }_{n-1} / I_{n-1}$	$\left(y_{n} m_{n} / I_{n}+y_{n-1} m_{n-1} / I_{n-1}\right)$
imr	$\mathrm{a} 5+\mathrm{pbl}+\mathrm{pbl}+\mathrm{c}$	$x d s_{n}$	$\left(y_{n} m_{n} / I_{n}+y_{n-1} m_{n-1} / I_{n-1}\right) d s_{n}$
imr	cl	$\times 1 / 2$	$\left(y_{n} m_{n} / I_{n}+y_{n-I} m_{n-1} / I_{n-1}\right) d s_{n} / 2$

iad dl+54

$$
\begin{aligned}
& \sum_{1}^{25+n-1}\left(x_{n} m_{n} / I_{n}+x_{n-1} m_{n-1} / I_{n-1}\right) d s_{n} / 2 \\
& \sum_{1}^{25+n}\left(x_{n} m_{n} / I_{n}+x_{n-1}^{m} m_{n-1} / I_{n-1}\right) d s_{n} / 2
\end{aligned}
$$

its $\quad 21+54$

$$
\sum_{n}^{25+n}\left(x_{n} m_{n} / I_{n}+x_{n-1} m_{n-1} / I_{n-1}\right) d s_{n} /
$$

The following program changes the addresses of the instructions in gl9 and g20 that utilize x, y and ds. The new addresses must move up a colum of registers.

OUT (Program goes into Whirlwind mode to change addresses).

The above integrations provide the three equations for solving an unsupported ring frame of three degrees of indeterminancy. To solve the subject problem, the equations

must be formed and solved simultaneously with the three previously formed. The designations E_{1}, B_{2}, B_{3} and B_{4} are the end points of the two stanchions. The sub-routine that follows determines the vertical deflection between B_{1} and B_{2} of the starboard

$$
\Delta y=\int_{B_{I}}^{B} \frac{m_{n}\left(x-x_{a}\right)}{I} d s=\sum_{B_{I}}^{B_{2}}\left(\frac{m_{n}\left(x_{n}-x_{a}\right)}{I}+\frac{m_{n-1}\left(x_{n-1}-x_{a}\right)}{I_{n-1}}\right) \frac{d s}{2}
$$

$$
=\sum_{B_{I}}^{B_{2}}\left[\frac{m_{n}\left(x_{n}-x_{a}\right)}{I_{n}} \frac{d s}{2}+\frac{m_{n-I}\left(x_{n-1}-x_{a}\right) d s_{n}}{I_{n-1}}\right]
$$

Instruction
Input to MRA
In MRA

> Transfer from MRA
ita $\mathrm{g} 21+41$
g21, icr pa5
ica $x I+p b I+c$
x_{n-1}
x_{n-1}
isu $x 7+p b 4$
$-x_{a}$

$$
\left(x_{n-1}-x_{a}\right)
$$

its t3

$$
\left(x_{n-1}-x_{a}\right)
$$

imr a5+pn4+c
x ds

$$
\left(x_{n-1}-x_{a}\right) d s
$$

imr cl
$\times 1 / 2$

$$
\left(x_{n-1}-x_{a}\right) d s / 2
$$

its' tI

$$
\left(x_{n-1}-x_{a}\right) d s / 2
$$

$\operatorname{imr} \mathrm{b} 3+\mathrm{pb} 4+\mathrm{c}$

$$
x(m / I)_{n-I}
$$

$$
\left(x_{n-1}-x_{a}\right)(m / I)_{n-1} d s_{n} / 2 n-1
$$

iad $d 7+56$

$$
\sum_{B_{1}}^{n-1}\left(x_{n-1}-x_{a}\right)(m / I)_{n-1} d s_{n} / 2
$$

Instr	ruction	Input to MRA	In MRA $\begin{aligned} & \text { Transfer } \\ & \text { from PRA } \end{aligned}$
(continued)$\sum_{B_{1}}^{n-1}\left(x_{n-1}-x_{a}\right)(n / I)_{n-1} d s_{n} / 2$			
ica	$x]+p b 4+2$	$+\mathrm{X}_{\mathrm{n}}$	$+\mathrm{X}_{\mathrm{n}}$
isu x	$x{ }^{\text {c }}+\mathrm{pb} 4$	$-{ }^{-x}$	$\left(x_{n}-x_{a}\right)$
its	th		$\left(x_{n}-x_{a}\right)$
imr	$a 5+p b 4+c$	x ds	$\left(x_{n}-x_{a}\right) d s_{n}$
imr	cl	$\times 1 / 2$	$\left(x_{n}-x_{a}\right) d s / 2$
its	t2		$\mathrm{ds} / 2\left(\mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{a}}\right)$
imr b	$\mathrm{b} 3+\mathrm{pbl}+\mathrm{pbl}+2+\mathrm{c}$	$x(m / I){ }_{n}$	$(m / I)_{n}\left(x_{n}-x_{a}\right) d s / 2$
iad	dl +56	$\sim_{\sim}^{1}(m / I)_{n}\left(x_{n}-x_{a}\right) d s / 2$	$\sum_{B_{1}}^{B_{1}+n}(m / I)_{n}\left(x_{n}-x_{a}\right) d s / 2$
its	d $1+56$		$\sum_{B_{I}}^{B_{I}+n}(m / I)_{n}\left(x_{n}-x_{a}\right) d s / 2$

Instruction	Input to MRA	In $M \mathbb{R} A$ $\begin{aligned} & \text { Transfer } \\ & \text { from MRA } \end{aligned}$
ica tl	$\left(x_{n-1}-x_{a}\right) d s / 2$	$\left(x_{n-1}-x_{a}\right) \mathrm{ds}_{n} / 2$
imr d $3+\mathrm{pb} 4+\mathrm{c}$	$\times I / I_{n-1}$	$\left(x_{n-1}-x_{a} / I_{n-1}\right) d s_{n} / 2$
its tl		$\left(x_{n-1}-x_{a} / I_{n-1}\right) d s_{n} / 2$
imr $\mathrm{y} 7+\mathrm{pb} 4+\mathrm{c}$	$x y_{n-1}$	$y_{n-1}\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n} / 2$
iad dl+16	$+\sum_{B_{1}}^{B_{1}^{+n-2}} y_{n-1}\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n} / 2$	$\sum_{B_{1}}^{B_{1}+n-1} y_{n-1}\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n} / 2$
its dl+16		$\sum_{B_{1}}^{B_{1}+n-1}{ }_{n-1}\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n} / 2$
ica t2	$\left(x_{n}-x_{a}\right) d s_{n} / 2$	$\left(x_{n}-x_{a}\right) d s_{n} / 2$
imr $\mathrm{d} 3+\mathrm{pb} 4+2+\mathrm{c}$	$x(I / I)_{n}$	$\left(x_{n}-x_{a}\right) / I_{n} d s_{n} / 2$
its t2		$\left(x_{n}-x_{a}\right) / I_{n} d s_{n} / 2$
imr $\mathrm{yl}+\mathrm{pb} 4+2+\mathrm{c}$	$x y_{n}$	$\left(x_{n}-x_{a}\right) y_{n} / I_{n} d s_{n} / 2$
iad dl+16	$+\sum_{B_{1}}^{B_{I}+n-1} y_{n-1}\left(x_{n}-x_{a}\right) / I_{n-1} d s_{n} / 2$	$\sum_{B_{I}}^{B_{1}+n} y_{n}\left(x_{n}-x_{a}\right) / I_{n} d s_{n} / 2$
its $\mathrm{d} 1+16$		$\sum_{B_{I}}^{B_{I}^{+n}} y_{n}\left(x_{n}-x_{a}\right) / I_{n} d s_{n} / 2$

The vertical deflection between the ends of the starboard stanchion due to the redundant q_{0} force was found by

$$
q_{0} \int_{B_{1}}^{B} \frac{x\left(x-x_{a}\right)}{I} d s=q_{0}\left[\frac{x_{n-1}\left(x_{n-1}-x_{a}\right)}{I_{n-1}} d s_{n}+\frac{y_{n}\left(x_{n}-x_{a}\right)}{I_{n}} d^{d} s_{n}\right]
$$

Instruction \quad Input to MRA $\quad \frac{\text { Transfer }}{\text { from MRA }}$
ica tl

$$
\left(x_{n-1}-x_{a} / I_{n-1}\right) d s_{n} / 2 \quad\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n} / 2
$$

$\operatorname{imr} x l+p b 4+c$

$$
x x_{n-1}
$$

$$
x_{n-1}\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n} / 2
$$

iad $\quad d 7+26$

$$
+\sum_{B_{1}}^{B_{1}+n-2} x_{n-1}\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n} / 2
$$

$$
\sum_{B_{1}}^{B_{1}+n-1} x_{n-1}\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n} / 2
$$

its $\mathrm{dl}+26$

$$
\sum_{B_{1}}^{B_{1}^{+n-1}} x_{n-1}\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n} / 2
$$

ica t2

$$
\left(x_{n}-x_{a}\right) / I_{n} d s_{n} / 2
$$

$$
\left(x_{n}-x_{a}\right) / I_{n} d s_{n} / 2
$$

$\operatorname{imr} x]+p b 4+2+c$

$$
x x_{n}
$$

$$
x_{n}\left(x_{n}-x_{a}\right) / I_{n} d s_{n} / 2
$$

iad $d l+26 \quad \sum_{B_{I}}^{B_{I}+n-1} x_{n-1}\left(x_{n-I}-x_{a}\right) / I_{n-1} d s_{n} / 2 \sum_{B_{I}}^{B_{I}+n} x_{n}\left(x_{n}-x_{a}\right) / I I_{n} d s_{n} / 2$
its $d>+26$

$$
\sum_{B_{I}}^{B_{I}+n} x_{n}\left(x_{n}-x_{a}\right) / I_{n} d s_{n} / 2
$$

The vertical deflection between the ends of the starboard stanchion due to the redundant column axial force R was found by

$$
\left.R \int_{B_{I}}^{B}\left(x-x_{a}\right)\left(\frac{x-x_{a}}{I}\right) d s=R\right\rangle\left[\frac{\left(x_{n}-x_{a}\right)^{2}}{I_{n}} \frac{d s_{n}}{2}+\frac{\left(x_{n-1}-x_{a}\right)^{2}}{I_{n-1}} \frac{d s_{n}}{2}\right] .
$$

$$
\begin{aligned}
& \text { Instruction } \\
& \text { In MRA } \\
& \left(x_{n-1}-x_{a}\right) \\
& \text { imr tl } \\
& \left(x_{n-1}-x_{a}\right) \\
& \left(x_{n-1}-x_{a}\right)^{2} / I_{n-1} d s / 2 \\
& \text { from MRA } \\
& \text { ica t3 } \\
& \begin{array}{l}
\text { iad } d l+36 \\
\text { its } d l+36
\end{array} \\
& \sum_{B_{1}}^{B_{1}+n-1}\left(x_{n-1}-x_{a}\right)^{2} / I_{n-1} d s_{n} / 2 \\
& +\sum_{B_{1}}^{B_{1}+n-2}\left(x_{n-1}-x_{a}\right)^{2} / I_{n-1} d s_{n} / 2 \\
& \sum_{B_{I}}^{B_{1}+n}\left(x_{n-I}-x_{a}\right)^{2} / I_{n-I} d s_{n} / 2 \\
& \text { ica th } \\
& \left(x_{n}-x_{a}\right) \\
& \left(x_{n}-x_{a}\right) \\
& \text { imr t2 } \\
& \times\left(x_{n}-x_{a}\right) / I_{n} d s_{n} / 2 \\
& \left(x_{n}-x_{a}\right)^{2} / I_{n} d s_{n} / 2 \\
& \text { iad } d I+36+\sum_{B_{I}}^{B_{I}+n-1}\left(x_{n-1}-x_{a}\right)^{2} / I_{n-1} d s / 2 \sum_{B_{I}}^{B_{I}+n-I}\left(x_{n}-x_{a}\right)^{2} / I_{n} d s_{n} / 2 \\
& \text { its } \mathrm{d}+36 \\
& \sum_{B_{I}}^{B_{I}+n}\left(x_{n}-x_{a}\right)^{2} / I_{n} d s_{n} / 2
\end{aligned}
$$

The vertical deflection between the two stanchion ends starboard side due to m_{0} was performed below.

$$
\left.m_{0} \int_{B_{I}}^{B_{2}} \frac{\left(x-x_{a}\right)}{I} d s=m_{0}\right\rangle\left[\frac{\left(x_{n}-x_{a}\right)}{I_{n}} \frac{d s_{n}}{2}+\frac{\left(x_{n-I}-x_{a}\right)}{I_{n-I}} \frac{d s_{n}}{2}\right]
$$

Instruction

ica tI
Input to MRA
In MRA
Transfer
from MRA
$\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n} / 2 \quad\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n} / 2$
iad t2

$$
+\left(x_{n}-x_{a}\right) / I_{n} d s_{n} / 2
$$

$$
\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n} / 2
$$

$$
+\left(x_{n}-x_{a}\right) / I_{n} d s_{n} / 2
$$

iad $\mathrm{dl}+6$

$$
\begin{aligned}
+\sum_{B_{I}}^{B_{I}+n-1} & \left(x_{n-I}-x_{a}\right) / I_{n-1} \\
& +\left(x_{n}-x_{a}\right) / I_{n} d_{s_{n}} / 2
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{B_{1}}^{B_{1}^{+n}}\left(x_{n-1}-x_{a}\right) / I_{n-1} d s_{n / 2} \\
& +\left(x_{n}-x_{a}\right) / I_{n} d s_{n} / 2
\end{aligned}
$$

its $\mathrm{dl}+6$
ict g2I+I
(Cycles back through the stanchion integrátion program).
isp

The following sub-routine performs the integrations around the port side which will give the total vertical deflection between the ends of the port stanchion. The entire sum should equal zero, since the stanchion is assumed incompressible.

$$
\begin{aligned}
& \sum_{B_{I}}^{B_{1}+n}\left[\left(x_{n-1}-x_{a}\right) / I_{n-1}\right. \\
& \left.+\left(x_{n}-x_{a}\right) / I_{n}\right] d s_{n} / 2
\end{aligned}
$$

The instructions that follow perform the integration

$$
\Delta y=\int_{B_{3}}^{B_{L_{4}}} \frac{m_{n}\left(x-x_{b}\right)}{I} d s=\sum_{B_{3}}^{B_{4}}\left[\frac{m_{n}}{I_{n}}\left(x_{n}-x_{b}\right)+\frac{m_{n-1}}{I_{n-1}}\left(x_{n-1}-x_{b}\right)\right] \frac{d s_{n}}{2}
$$

Instruction
Input to MRA
In MRA
Transfer
from MPA
ital $g 22+18$
g22, ier pa

inca $\mathrm{xI}+\mathrm{pb5} 5 \mathrm{c}$	$\mathrm{x}_{\mathrm{n}-1}$	$\mathrm{x}_{\mathrm{n}-1}$
is $\mathrm{xI}+\mathrm{pb5}$	$-x_{b}$	$x_{n-1}-x_{b}$
its ty		

imp cl

$$
x d s_{n}
$$

$i m r a 5+p b 5+c$

$$
\left(x_{n-1}-x_{b}\right) d s_{n}
$$

$$
\left(x_{n-1}-x_{b}\right) d s_{n} / 2
$$

its tI
imp $\mathrm{b} 3+\mathrm{pb} 6+\mathrm{pb} 6$

$$
x(m / I)_{n-I}
$$

$$
(m / I)_{n-1}\left(x_{n-1}-x_{b}\right) d s_{n} / 2
$$

id $d I+58+\sum_{B_{3}}^{B_{3}+n-2}(m / I)_{n-1}\left(x_{n-1}-x_{b}\right) d s_{n} / 2 \sum_{B_{3}}^{B_{3}+n-1} m_{n}\left(x_{n-1}-x_{b}\right) / I_{n-1} d s_{n} / 2$
its $\mathrm{d}+58$

$$
\sum_{B_{3}}^{B_{3}+n-1} m_{n-n}\left(x_{n--x_{b}}\right) / I_{n-1} d s_{n} / 2
$$

inca $\mathrm{xI}+\mathrm{pb} 5+2+\mathrm{c}$

$$
+x_{n}
$$

$$
+x_{n}
$$

is $\mathrm{xI}+\mathrm{pb} 5$
$-x_{b}$

$$
x_{n}-x_{b}
$$

OUT
ca $222+16$
$i m r b 3+p b 6+p b 6-2 \quad i m r b 3+p b 6+p b 6-2$
ts g22+7
imr b3+pb6+pb6-2
su c7
imr b3+pb6+pb6-4
ts g22+16 imr b3+pb6*pb6-4

IN

The following section of the sub-routine performs the integral

$$
\left.p_{0} \int_{B_{3}}^{B} \frac{y\left(x-x_{b}\right)}{I} d s=p_{0}\right\rangle\left[\frac{y_{n-1}\left(x_{n-1}-x_{b}\right)}{I_{n-1}}+\frac{y_{n}\left(x_{n}-x_{b}\right)}{I_{n}}\right] \frac{d s_{n}}{2}
$$

Instruction
ica tl

$$
\left(x_{n-1}-x_{b}\right) d s_{n} / 2
$$

$$
\left(x_{n-1}-x_{b}\right) d s_{n} / 2
$$

imr $\mathrm{d} 3+\mathrm{pb} 5+\mathrm{c}$

$$
\left(x_{n-1}-x_{b}\right) / I_{n-1} d s_{n} / 2
$$

its t]

$$
\left(x_{1-1}-x\right) \times x_{1-1} / 2
$$

imr yI $\mathrm{y}+\mathrm{pb5} 5 \mathrm{c}$
$x^{y}{ }_{n-1}$

$$
x(I / I)_{n-I}
$$

$$
y_{n-1}\left(x_{n-I}-x_{b}\right) / I_{n-I} d s_{n} / 2
$$

ica t2

$$
\left(x_{n}-x_{b}\right) d s_{n} / 2
$$

$$
\left(x_{n}-x_{b}\right) d s_{n} / 2
$$

irre $\mathrm{d} 3+\mathrm{pb} 5+2+\mathrm{c}$

$$
\times I / I_{n}
$$

$$
\left(x_{n}-x_{b}\right) / I_{n} d s_{n} / 2
$$

imr $\mathrm{yl}+\mathrm{pb} 5+2+\mathrm{c}$
xy $_{n}$
$y_{n}\left(x_{n}-x_{b}\right) / I_{n} d s_{n} / 2$
iad $d I+18 \sum_{B_{3}}^{B_{3}+n-1} y_{n-1}\left(x_{n-1}-x_{b}\right) / I_{n-1} d s_{n} / 2 \sum_{B_{3}}^{B_{3}^{+n}} y_{n}\left(x_{n}-x_{0}\right) / I_{n} d s_{n} / 2$
its $21+18$

$$
\begin{aligned}
& \sum_{B_{3}}^{B_{3}+n-2} y_{n}\left(x_{n}-x_{b}\right) / I_{n} d s_{n} / 2 \\
& \sum_{B_{3}}^{B_{3}+n-I} I_{n-I}\left(x_{n-1}-x_{b}\right) / I_{n-I} d s_{n} / 2 \\
& \sum_{B_{3}}^{B_{3}+n-1} y_{n-1}\left(x_{n-1}-x_{b}\right) / I_{n-1} d s_{n} / 2 \\
& \text { its } \mathrm{d} \text { I }+18 \\
& \text { iad } d 1+18 \\
& \text { its } d l+18
\end{aligned}
$$

$$
\sum_{B_{3}}^{B_{3}^{+n}} y_{n}\left(x_{n}-x_{b}\right) / n_{n} d s_{n} / 2
$$

The following section of the sub-routine performs the integration

$$
q_{0} \int_{B_{3}}^{B_{4}} \frac{x\left(x-x_{b}\right)}{I} d s=q_{0} \sum_{B_{3}}^{B_{4}}\left[\frac{x_{n}\left(x_{n}-x_{b}\right)}{I_{n}} \frac{d s}{2}+\frac{x_{n-1}\left(x_{n-1}-x_{b}\right)}{I_{n-1}}\right] \frac{d s}{2}
$$

The following section of the sub-routine forms the vertical deflection caused by the axial stanchion force redundant S.

$$
\Delta y=s \int_{B_{3}}^{B_{4}} \frac{\left(x-x_{b}\right)\left(x-x_{b}\right)}{I I} d s=s \sum_{B_{3}}^{B_{4}}\left[\frac{\left(x_{n}-x_{b}\right)^{2}}{I_{n}} \frac{d s_{n}}{2}+\frac{\left(x_{n-I}-x_{b}\right)^{2}}{I_{n-1}}\right] \frac{d s_{n}}{2} .
$$

Instruction

Transfer from MRA

inca ts

$$
x_{n-1}-x_{b}
$$

$$
\left(x_{n-1}-x_{b}\right)
$$

imp tl

$$
x\left(x_{n-1}-x_{b}\right) / I_{n-1} d s_{n} / 2 \quad\left(x_{n-1}-x_{b}\right)^{2} / I_{n-1} d s_{n} / 2
$$

ied $d 1+48 \sum_{B_{3}}^{B_{3}+n-2}\left(x_{n-2}-x_{b}\right)^{2} / I_{n-2} d s_{n} / 2 \sum_{B_{3}}^{B_{3}+n-1}\left(x_{n-1}-x_{b}\right)^{2} / I_{n-1} d s_{n} / 2$
its $d 1+48$

$$
\sum_{B_{3}}^{B_{3}+n-1}\left(x_{n-1}-x_{b}\right)^{2} / I_{n-1} d s_{n} / 2
$$

inca th

$$
\left(x_{n}-x_{b}\right)
$$

$$
\left(x_{n}-x_{b}\right)
$$

$i m r t 2$

$$
x\left(x_{\mathrm{n}}-\mathrm{x}_{\mathrm{b}}\right) / I_{\mathrm{n}} \mathrm{~d} \mathrm{~s}_{\mathrm{n}} / 2
$$

$$
\left(x_{\mathrm{n}}-x_{\mathrm{b}}\right)^{2} / I_{\mathrm{n}} d s_{\mathrm{n}} / 2
$$

iad $d 1+48 \sum_{B_{3}}^{B_{3}+n-1}\left(x_{n-1}-x_{b}\right)^{2} / I_{n-1} d s_{n} / 2 \sum_{B_{3}}^{B_{3}+n}\left(x_{n-1}-x_{b}\right)^{2} / I_{n} d s_{n} / 2$ its $d 1+48$

$$
\sum_{B_{3}}^{B_{n}^{+n}}\left(x_{n}-x_{b}\right)^{2} / I_{n} d_{n} / 2
$$

The following section of the sub-routine finds the verticel deflection caused by the redundant moment m_{0}.

$$
\Delta y=m_{0} \int_{B_{3}}^{B_{4}} \frac{\left(x-x_{b}\right)}{I} d s=m_{0} \sum_{B_{3}}^{B_{4}}\left[\frac{\left(x_{n}-x_{b}\right)}{I_{n}} \frac{d s_{n}}{2}+\frac{\left(x_{n-1}-x_{b}\right)}{I_{n-1}}\right] \frac{d s_{n}}{2}
$$

Transfer from MRA
ica tI

$$
\left(x_{n-1}-x_{b}\right) / I_{n-1} d s_{n} / 2
$$

$$
\left(x_{n-1}-x_{b}\right) / I_{n-1} d s_{n} / 2
$$

iad t2

$$
\begin{aligned}
\left(x_{n}-x_{b}\right) / I_{n} d s_{n} / 2 & \left(x_{n-1}-x_{b}\right) / I_{n-I}{ }_{n} s_{n} / 2 \\
& +\left(x_{n}-x_{b}\right) / I_{n} d s_{n} / 2
\end{aligned}
$$

iad dl+8

$$
\sum_{B_{3}}^{\sum_{\left.+\left(x_{n}-x_{b}\right) / I_{n}\right]}^{B_{n}^{+n-1}}\left[\left(x_{n-1}-x_{b}\right) / I_{n-1}\right.} \sum_{\substack{B_{3}\\}}^{\sum_{n-1}^{B_{n}+n}\left[\left(x_{n}-x_{b}\right) / I_{n} d s_{n} / 2\right]}
$$

its dI+8

$$
\sum_{B_{3}}^{\sum_{3}^{3+n}}\left[\begin{array}{l}
\left(x_{n-1}-x_{b}\right) / I_{n-1} \\
\left.+x_{b} / I_{n}\right] d s_{n} / 2
\end{array}\right.
$$

ict g22+I
(Cycles back to g22+I).

The redundant stanchion forces affect the deflections for the web as a whole in much the same manner as the three basic redundant forces affect the deflection around the two stanchion sections. An analysis of Figure VI shows that the integrals of p_{0}, q_{0}, and m_{0} for the traverse around the stanchion loop is the same as the integrals of R and S about
the entire web girth. Therefore, the coefficients of the redundant which are the integrals may be used in several places. As an example the coefficlient of the deflection magnitude due to m_{0} between B_{1} and B_{2} is the same as the coefficient of the angular rotation magnitude due to the redundant R about the entire girth. Moment due to R is $R\left(x-x_{a}\right)$ and the rotation due to the moment is

$$
R \int_{0}^{0^{\prime}} \frac{\left(x-x_{a}\right)}{I} d s=R \int_{0}^{B_{1}} \frac{\left(x-x_{a}\right)}{I} d s+\int_{B_{I}}^{B_{2}} \frac{\left(x-x_{n}\right)}{I} d s+\int_{B_{2}}^{0^{\prime}} \frac{\left(x-x_{a}\right)}{I} d s
$$

The deflection between B_{1} and B_{2} due to m_{0} is

$$
m_{0} \int \frac{\left(x-x_{0}\right)}{I} d s
$$

The following instructions utilize the computed coefficients to foil similar values
Instruction
Input to IRA
In MRA
Transfer
from MRA
ica $d 1+6 \quad \int_{B_{I}}^{B_{2}}\left(x-x_{a}\right) / I d s+\int_{B_{I}}^{B}\left(x-x_{a}\right) / I d s$
its $\mathrm{d} I+30$
$\int_{B_{1}}^{B}\left(x-x_{a}\right) / I d s$
ice $d 1+16$

$$
\int_{B_{I}}^{B_{2}} y\left(x-x_{a}\right) / I d s
$$

$$
+\int_{B_{I}}^{B_{2}} y\left(x-x_{a}\right) / I d s
$$

Instruction	Input to MRA In MRA	$\frac{\text { Trensfor }}{\text { frem MRA }}$
	(continued)	
its $\mathrm{d} 1+4$		$\int_{3}^{B_{3}} x\left(x-x_{e}\right) / I d s$

isp

The following sub-routine reduces the matrix of deflection equations by Crout's method and finds values for all redundants. The subroutine, designated by S 2 , is a routine contained in the library of the computer laboratory. The library routines have been tested and tried and are known to be correct. For this reason only the method of entering the routine will be given.

Instruction
ita g23+
OUT
g23, SP S2
$d 1$
Address of first colum.
5
Order of matrix.
I
Nuriber of colurms of constants
IN
isp
The instructions below alter the vertical and horizontal forces to include the redundant forces p_{0}, q_{0}, R and S. Note that each redundant is applied as a load at its point of action.

$$
H_{2}=H_{I}-p_{0} \quad V_{2}=V_{I}-q_{0}+R+S .
$$

Instruction	Input to PRA	In PRA	$\begin{aligned} & \text { Transfer } \\ & \text { from iRA } \end{aligned}$
ita g24 +25			
g 24, ica e5	$+\mathrm{V}_{\mathrm{n}}$	$+\mathrm{V}_{n}$	
isu $\mathrm{d} \mathrm{l}+54$	${ }_{0} 0$	$\mathrm{V}_{\mathrm{n}}-\mathrm{q}_{0}$	
its 65			$V_{n}-q_{0}$
	The following instructions form $\mathrm{H}-\mathrm{p}_{0}$		
ica e3	$+\mathrm{H}_{\mathrm{W}}$	$+\mathrm{H}_{\text {V }}$	
isu $\mathrm{d} \boldsymbol{1}+52$	$-p_{0}$	$\mathrm{H}_{\mathrm{W}}-\mathrm{p}_{0}$	
its e3			$\mathrm{H}_{\mathrm{W}}-\mathrm{O}_{0}$
	The following instructions form V-R		
ica ${ }^{5}+\mathrm{pb} 4$	$+\mathrm{V}_{\mathrm{n}}$	$+V_{n}$	
isu $\mathrm{dl}+56$	-R	$\mathrm{V}_{\mathrm{n}}-\mathrm{R}$	
its e5+pbl4			$\mathrm{V}_{\mathrm{n}}-\mathrm{R}$
ica $\mathrm{e} 5+\mathrm{pb} 5+\mathrm{pa} 5+\mathrm{pa5}$	$+\mathrm{V}_{\mathrm{n}}$	$+\mathrm{V}_{\mathrm{n}}$	
iad $27+56$	+R	$\mathrm{V}_{\mathrm{n}}+\mathrm{R}$	
its $65+\mathrm{pb} 4+\mathrm{pa5}+\mathrm{pa} .5$			$\mathrm{V}_{\mathrm{n}}+\mathrm{R}$
ica ${ }^{5}+5+\mathrm{pb} 6+\mathrm{pb} 6$	$+\mathrm{V}_{\mathrm{n}}$	$+V_{n}$	
Isu $27+58$	+S	$\mathrm{V}_{\mathrm{n}}+\mathrm{S}$	
its e5tpb6+pb6			$\mathrm{V}_{\mathrm{n}}+\mathrm{S}$
ica $a b 6+p b 6-p a 6-p a 6$	+ V	+V	
iad $31+58$	$+S$	$+\mathrm{V}+\mathrm{S}$	
its pb6+pb6-pa6-pa6			V+S

The Whirlwind instructions that follow change the address of $\mathrm{g} 24+16$ and $\mathrm{g} 24+18$.

IN
jct $g 24+16$

The following subroutine finds the stresses at each station due to the axial loads (p), the shear loads (q) and the bending moments (m). After the various stresses have been formed the direct stresses and the maximum compression and tension bending stresses are combined to form the total stresses at the flange and at the shell surface. The relationshins listed below are utilized in the sub-program.

$$
\begin{aligned}
& p=H \cos \phi-V \sin \phi \\
& q=H \sin \phi-V \cos \phi
\end{aligned}
$$

Direct stress $\sigma_{a}=p / A$
Shear stress $\sigma_{b}=q / A$
Bending Stresses $=\mathrm{my} / \mathrm{I}$

$$
\begin{aligned}
& \sigma_{s_{m}}=\operatorname{sheII_{m}}=m / I\left(\partial_{I T \cdot}+t_{s}\right) \\
& \sigma_{f_{m}}=\text { flange }_{m}=m / I\left(t_{f}+d_{W}-\alpha_{N \cdot}\right) \\
& \sigma_{s}=\sigma_{a} \pm \sigma_{m}
\end{aligned}
$$

The following instructions use the above relationships for the starboard side of the frame.

inca to

$+\sum^{n-1} V$
ind e5+c
$+V$
its $\dagger 8$
$+\sum^{n} V$
imp al +c
$x \sin \varnothing$
$\sum^{n} V \sin \phi$
its tI
$\sum^{n} V \sin \phi$
inca t?
$+\sum^{n-1} H$
ind e3+c
$+\mathrm{H}$
$+\sum^{n-1} H$
$+\sum^{n} H$
its t7
inner alec
$x \cos \phi$
isu tI
$-V \sin \phi$
$\sum^{n} H \cos \phi$
$\sum^{n} H$
$\sum H \cos \phi-\sum V \sin \phi=p$
ica t8

$+\sum^{n} V$
ims $a 2+c$
$x \cos \phi$
$\sum^{n} V \cos \phi$
its t工
ics t?
$+\sum^{n} H$
$+\sum^{n} H$
imr al
$x \sin \phi$
$\sum^{n} H \sin \phi$
isu tl
$-\sum^{n} V \cos \phi$
$\sum^{n} H \sin \phi-\sum^{n} \cos \phi=0$
i. $\mathrm{dv} \quad \mathrm{d} 2+\mathrm{c}$
$\div A$
q / A
ime el
X 8
$8 \mathrm{q} / \mathrm{A}$
its sl+c
$8 q^{\prime}+\sigma$

Note that σ_{b} was formed using the entire aroa as effective in shears. This is an error thich should be correcten since only the area of the web is effective in shear.
ics dlec
$-\mathrm{d}_{\mathrm{N} . \Lambda}$.
$-d_{M_{T}} . A$.
(continued)
isu $\mathrm{b} 5+\mathrm{c}$

$$
-t_{s}
$$

$$
-\left(d_{N_{0}} A_{0}+t_{S}\right)
$$

imr cl5
$\times 12$
$-12\left(d_{N_{0} A_{0}}+t_{s}\right)$
imr b3+c
$\times \mathrm{m} / \mathrm{I}$
$-12 \mathrm{~m} / \mathrm{I}\left(\mathrm{d}_{\mathrm{N}, \mathrm{A}_{0}}+\mathrm{t}_{\mathrm{s}}\right)=\sigma_{\mathrm{sm}}$
imr el
$\times 8$
$-96 \mathrm{~m} / \mathrm{I}\left(\mathrm{d}_{\mathrm{N} \cdot \mathrm{A}_{0}}+\mathrm{t}_{\mathrm{s}}\right)=-\sigma_{\mathrm{SIn}}$
iad xl+c
$+{ }_{a}$
$-\left(\sigma_{s m}-\sigma_{a}\right)=\sigma_{s}$
its $25+c$

$$
\sigma_{s}
$$

ica $b l+c$
iad blucc
isu dI+c $-\mathrm{d}_{\mathrm{N} .}$.
imr c15
$\times 12$
$+d_{W}$
$\mathrm{d}_{\mathrm{V}}+\mathrm{t}_{\mathrm{f}}$
imr b3+c
inr el
$\times 8$
$96 \mathrm{~m} / \mathrm{I}\left(\mathrm{d}_{\mathrm{W}}+\mathrm{t}_{\mathrm{f}}-\mathrm{d}_{\mathrm{N}_{0} \mathrm{~A}_{0}}\right)=\sigma_{\sum_{m}}$
iad x]+c
$+{ }_{a}$
$\sigma_{f m}+\sigma_{a}=\sigma_{f}$
its e5+c
σ_{I}
ict g25+34

The following instructions calculate the stresses around the port side.

Input to MRA In MRA
(continued)
ics $\mathrm{dl}+\mathrm{pb} 2+\mathrm{pb} 2$
iad $\mathrm{b} 4+\mathrm{pb} 2+\mathrm{pb} 2$
iad $\mathrm{bl}+\mathrm{pb} 2+\mathrm{pb} 2$
imr b3+pal+pal+c
iad $x l+p a l+p a l+c$
its $e^{5}+$ pal + pal $+c$

$-\mathrm{d}_{\mathrm{N} . \mathrm{A}}$.
$-\mathrm{d}_{\mathrm{N}, \mathrm{A}}{ }^{+\mathrm{t}_{\mathrm{f}}}$
$\left(d_{W}+t_{f}-d_{N . A_{0}}\right)$
$m / I\left(d_{w}+t_{f}-\alpha_{N_{\bullet} A_{\bullet}}\right)=\sigma_{f m}$
$\sigma_{f m}-\sigma_{a}=\sigma_{f}$

Transfer from IRA

OUT
(The following instructions change the addresses of the above program).
ca $226+3$
su c7
-2
ts g26+3
ts g26+17
ca g26+7
su c7
ts g26+7
ca g26+9
su c7
is g26+9
ts $\mathrm{g} 26+14$
ca. $g 26+11$
su. c7
ts $\mathrm{g} 26+11$
imr $\mathrm{al}+\mathrm{pb} 2+\mathrm{pb} 2$
$\mathrm{imr} \mathrm{al}+\mathrm{pb} 2+\mathrm{pb} 2-2$
$\operatorname{imr} \mathrm{al}+\mathrm{pb} 2+\mathrm{pb}^{2}-2$
iad e3+pb2+pb2
iad e3+pb2+pb2-2
iad e3+pb2+pb2-2
$i m r a 2+p b 2+p b 2$
imr a2+pb2+pb2-2
imr $a 2+p b 2+p b 2-2$
imr $\mathrm{a} 2+\mathrm{pb} 2+\mathrm{pb} 2-2$
idv d2 $+\mathrm{pb} 2+\mathrm{pb} 2$
idv $\mathrm{d}_{2}+\mathrm{pb} 2+\mathrm{pb} 2-2$
idv $\mathrm{d} 2+\mathrm{pb} 2+\mathrm{pb} 2-2$

Input to PRA In MRA
(continued)
ts $\mathrm{g} 26+18$ idy d2+pb2+pb2-220

ca $g 26+20$	ics $\partial l+\mathrm{pb} 2+\mathrm{pb} 2$	ics $\mathrm{dl}+\mathrm{pb} 2+\mathrm{pb} 2$
su c 7	-2	ics $\mathrm{dl}+\mathrm{pb} 2+\mathrm{pb} 2-2$

ts g26+20
ts g26+25
ca g26+21
su c7
isu $\mathrm{b} 5+\mathrm{pb} 2+\mathrm{pb} 2$
isu $\mathrm{b} 5+\mathrm{pb} 2+\mathrm{pb} 2$
isu $\mathrm{b} 5+\mathrm{pb} 2+\mathrm{pb} 2-2$
ts g26+21
ca $\operatorname{g} 26+26$
su c7
ts $\mathrm{g} 26+26$
ca. $\operatorname{g26}+27$
iad $b 1+p b 2+p b 2$
iad bl+pb2+pb2
su c7
-2
iad. $\mathrm{b} 1+\mathrm{pb} 2+\mathrm{pb} 2-2$
iad bl $4+\mathrm{pb} 2+\mathrm{pb} 2-2$
ts g26+27
iad $b I+p b^{2} 2 \div p b 2-2$
IN
ict g26
g27, isp

Appendix C
Bibliography

BIBLIIOGRAPHY

1. Adams, Charles, "Intact Stability Study Prograrmed for a Digital Computer, "Massachusetts Institute of Technology, Servomechanisns Laboratory Report R-156, March 1949.
2. Hildebrand, F. B., Methods of Applied Mathematics, Prentice-Hali Publishing Company, 1952.
3. Hovgaard, William, Structural Design of Warships, The United States Naval Institute, Annapolis, Maryland, 1940.
4. Klass, P. J., "Digital Corpputer Trend Seen," Aviation Week, Vol. 57, Ño. 26, December 1952.
5. Liggett, I. C., "Examples of Engineering Applications on I.B.M. Digital Computers," Electrical Engineering, Vol. 74, March 1955.
6. MacWilliams, W. H., "Computers, Past, Present and Future," Electrical Engineering, Vol. 72, February 1953.
7. Schokker, J. C., Neuerberg, E.M. and Vossnack, E. J., The Design of Merchant Ships, N. V. DeTechnische Uitgevery, H. Stam, Haarlem, Holland, 1953.
8. Smith, A. E. and Sriith, C. V. L., "Digital Computers and Their Applications," Journal of the American Society of Naval Engineers, Vol. 61, February 1949.
9. Thomas, W. H., "Fundamentals of Digital Computer Progranming," Proceedings of the Institute of Radio Engineers, Vol. 41, October 1953.
10. Wang, Chu-Kai, Statically Indeterminate Structures, McGraw-iilil Book Company, Inc., New York, 1953.
11. Wasem, E. F. and Moore, C. S., "Computer Solutions in Naval Architecture," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 63, 1955.

32768002071953
DUDLEY KNOX LIBRARY

